Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or... – The polynucleotide alters fat – fatty oil – ester-type wax – or...
Patent
1997-03-17
1999-01-12
Tsang, Cecilia J.
Multicellular living organisms and unmodified parts thereof and
Method of introducing a polynucleotide molecule into or...
The polynucleotide alters fat, fatty oil, ester-type wax, or...
514 2, 424 93, 435800, 435847, C12N 500, C12N 1500, A01N 3718, A61K 3800
Patent
active
058593241
ABSTRACT:
The present invention relates to a method of imparting pathogen resistance to plants. This involves applying a hypersensitive response elicitor polypeptide or protein in a non-infectious form to a plant under conditions where the polypeptide or protein contacts cells of the plant. The present invention is also directed to a pathogen resistant plant and a composition for imparting pathogen resistance to plants.
REFERENCES:
patent: 4569841 (1986-02-01), Liu
patent: 4597972 (1986-07-01), Taylor
patent: 4601842 (1986-07-01), Caple et al.
patent: 4740593 (1988-04-01), Gonzalez et al.
patent: 4851223 (1989-07-01), Sampson
patent: 4886825 (1989-12-01), Ruess et al.
patent: 4931581 (1990-06-01), Schurter et al.
patent: 5057422 (1991-10-01), Bol et al.
patent: 5061490 (1991-10-01), Paau et al.
patent: 5135910 (1992-08-01), Blackburn et al.
patent: 5173403 (1992-12-01), Tang
patent: 5217950 (1993-06-01), Blackburn et al.
patent: 5243038 (1993-09-01), Ferrari et al.
patent: 5244658 (1993-09-01), Parke
patent: 5260271 (1993-11-01), Blackburn et al.
patent: 5348743 (1994-09-01), Ryals et al.
patent: 5494684 (1996-02-01), Cohen
patent: 5523311 (1996-06-01), Schurter et al.
patent: 5550228 (1996-08-01), Godiard et al.
patent: 5552527 (1996-09-01), Godiard et al.
Stryer, "Enzymes are Highly Specific," Biochemistry, San Francisco: W.H. Freeman and Company, p. 116 (1975).
Keen et al., "Inhibition of the Hypersensitive Reaction of Soybean Leaves to Incompatible Pseudomonas spp. by Blasticidin S, or Elevated Temperature," Physiological Plant Pathology, 18:325-337 (1981).
Lerner "Tapping the Immunological Repertoire to Produce Antibodies of Predetermined Specificity," Nature, 299:592-596 (1982).
Staskawicz et al., "Cloned Avirulence Gene of Pseudomonas Syringae pv. glycinea Determines Race-specific Incompatibility on Glycine max (L.) Merr.," Proc. Natl. Acad. Sci., 81:6024-6028 (1984).
Atkinson et al., "The Hypersensitive Reaction of Tobacco to Pseudomonas Syringae pv. pisi.sup.1," Plant Physiol., 79:843-847 (1985).
Huynh et al., "Bacterial Blight of Soybean: Regulation of a Pathogen Gene Determining Host Cultivar Specificity," Science, 245:1374-1377 (1986).
Lindgren et al., "Gene Cluster of Pseudomonas Syringae pv. Phaseolicola J. Bacteriology, Controls Pathogenicity of Bean Plants and Hypersensitivity on Nonhost Plant," 168(2):512-522 (1986).
Bauer et al., "Cloning of a Gene from Erwinia Amylovora Involved in Induction of Hypersensitivity and Pathogenicity," Plant Pathogenic Bacteria, 425-429 (1987).
Collinge et al., "Plant Gene Experssion in Response to Pathogens," Plant Molecular Biology, 9:389-410 (1987).
Shatzman et al., "Expression, Identification, and Charcterization of Recombinant Gene Products in Escherichia coli," Methods in Enzymology, 152:661-673 (1987).
Shields, "Towards Insect-Resistant Plants," Nature, 328:12-13 (1987).
Huang et al., "Molecular Cloning of a Pseudomonas syringae pv. syringae Gene Cluster That Enables Pseudomonas fluorescens To Elicit the Hypersensitive Response in Tobacco Plants," Journal of Bacteriology, 170(10):4748-4756 (1988).
Schottens-Toma et al., "Purufication and Primary Structure of a Necrosis-inducing Peptide from the Apoplastic Fluids of Tomato Infected with Cladosporium fulvum (syn. Fulvia fulva)," Physiological and Molecular Plant Pathology, 33:59-67 (1988).
Steinberger et al., "Creation and Complementation of Pathogencity Mutants of Erwinia Amylovora," Molecular Plant-Microbe Interactions, 1(3):135-144 (1988).
Beer et al., "The Hypersensitive Response is Elicited by Escherichia Coli Containing a Cluster of Pathogencity Gene from Erwinia Amylovora," Phytopathology, 79(10):1156 (Abstract 169) (1989).
Hiatt et al., "Production of Antibodies in Transgenic Plants," Nature, 342:76-78 (1989).
Hippe et al., "In Situ Localization of a Foreign Protein in Transgenic Plants by Immnoelectron Microscopy Following High Pressure Freeze Substitution and Low Temperature Embedding," European Journal of Cell Biology, 50:230-234(1989).
Huang et al., "Isolation and Purification of a Factor from Pseudomonas Solanacearum That Induces a Hypersensitive-like Response in Potato Cells," Molecular Plant-Microbe Interactions, 2(3):132-138 (1989).
James et al., "Genetic Transformation of Apple (Malus pumila Mill.) Using a Disarmed Ti-binary Vector," Plant Cell Reports, 7:658-661 (1989).
Laby et al., "Cloning and Preliminary Characterization of an HRP Gene Cluster of Erwinia Amylovora," Phytopathology, 79(10):1211 (Abstract 607) (1989).
Dow et al., "Extracellular Protease from Xanthomonas campestris pv. Campestris, the Black Rot Pathogen," Applied and Environmental Microbiology, 56(10):2994-2998 (1990).
Walters et al., "Gene for Pathogencity and Ability to Cause the Hypersensitve Reaction Cloned from Erwinia Amylovora," Physiological and Molecular Plant Pathology, 36:509-521 (1990).
Wu et al., "Cloning, Genetic Organization, and Characterization of a Structural Gene Encoding Bacillopeptidase F from Bacillus subtilis," The Journal of Biological Chemistry, 265(12):6845-6850 (1990).
Bauer et al., "Further Characterization of hrp Gene Cluster of Erwinia Amylovora," Molecular Plant Microbe Interactions,4(5):493-499 (1991).
Beer et al., "The HRP Gene Cluster of Erwinia Amylovora," Advances in Molecular Genetics of Plant-Microbe Interactions, 1:53-60 (1991).
Benvenuto et al., "`Phytoantibodies`: A General Vector for the Expression of Immunoglobulin Domains in Transgenic Plants," Plant Molecular Biology, 17:865-874 (1991).
Milat et al., "Physiological and Structural Changes in Tobacco Leaves Treated with Cryptogein, a Proteinaceous Elicitor from Phytophthora crytogea," Phytopathology, 81(11):1364-1368 (1991).
Ruberti et al., "A Novel Class of Plant Proteins Containing a Homeodomain with a Closely Linked Leucine Zipper Motif," The EMBO Journal, 10(7):1787-1791 (1991).
Quigley et al., "Nucleotide Sequence and Expression of a Novel Glycine-Rich Protein Gene from Arabidopsis Thaliana," Plant Molecular Biology, 17:949-952 (1991).
van Kan et al., "Cloning and Characterization of cDNA of Avirulence Gene avr9 of the Fungal Pathogen Cladosproium fulvum, Causal Agent of Tomato Leaf Mold," Molecular Plant-Microbe Interactions, 4(1):52-59 (1991).
Waldmann, "Monoclonal Antibodies in Diagonsis and Therapy," Science, 252:1657-1662 (1991).
Willis et al., "hrp Genes of Phytopathogenic Bacteria," Molecular Plant-Microbe Interactions, 4:(2) 132-138 (1991).
Beer et al., "Are Harpins Universal Elicitors of the Hypersensitive Response of Phytopathogenic Bacteria?," Advances in Molecular Genetics of Plant-Microbe Interations, 2:281-286 (1992).
Laby et al., Molecular Plant-Microbe Interactions, 5(5):412 (1992).
Sandhu, Crit. Rev. in Biotech., (92-review) 12:437-462.
Wei et al., "Harpin, Elictor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia Amylovora," Science, 257:85-88 (1992).
He et al., "Pseudomonas syringae pv. syringae Harpin.sub.p86 : A Protein that is Secreted Via the Hrp Pathway and Elicits the Hypersensitive Response in Plants," Cell, 73:1255-1266 (1993).
Bonas, "Bacterial Home Goal by Harpins," Trends in Microbiology, 2:1-2 (1994).
Boccara, et al., "Plant Defense Elicitor Protein Produced by Erwinia chrysanthemi," Mechanisms of Plant Defense Responses,p. 166 (1993).
Bauer, et al., "Erwinia chrysanthemi hrp Genes and Their Involvement in Soft Rot Pathogenesis and Elicitation of the Hypersensitive Response," MPMI, 7(5):573-81 (1994).
Collmer et al., "Erwinia chyrsanthemi and Pseudomonas syringae: Plant Pathogens Trafficking in Extracellular Virulence Proteins," pp. 43-78 (1994).
Frederick et al., "The wts water-soaking genes of Erwinia stewartii are Related to hrp genes," Seventh International Symposium on Molecular Plant Microbe Interactions, Abstract No. 191 (Jun. 1994).
Wei et al., "Proteinaceous Elicitors of the Hypersensitive Response from Xanthomonas camperstris pv. glycines," Seventh International Symposium on Molecular Plant Microbe Interactions, Abstract No. 244 (Jun. 1994).
Preston et al., "The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are Enc
Beer Steven V.
Wei Zhong-Min
Cornell Research Foundation Inc.
Harle Jennifer
Tsang Cecilia J.
LandOfFree
Hypersensitive response induced resistance in plants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hypersensitive response induced resistance in plants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hypersensitive response induced resistance in plants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1518414