Hyperpolarized gas transport and storage devices and...

Special receptacle or package – For gas – With gas storing absorbent or solvent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C206S818000, C062S003100, C062S045100, C062S914000

Reexamination Certificate

active

06648130

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the transport of hyperpolarized gases from one site to another, such as from a production site to a clinical use site. The hyperpolarized gases are particularly suitable for MR imaging and spectroscopy applications.
BACKGROUND OF THE INVENTION
Inert gas imaging (“IGI”) using hyperpolarized noble gases is a promising recent advance in Magnetic Resonance Imaging (MRI) and MR spectroscopy technologies. Conventionally, MRI has been used to produce images by exciting the nuclei of hydrogen molecules (present in water protons) in the human body. However, it has recently been discovered that polarized noble gases can produce improved images of certain areas and regions of the body which have heretofore produced less than satisfactory images in this modality. Polarized Helium-3 (“
3
He”) and Xenon-129 (“
129
Xe”) have been found to be particularly suited for this purpose. Unfortunately, as will be discussed further below, the polarized state of the gases is sensitive to handling and environmental conditions and can, undesirably, decay from the polarized state relatively quickly.
Various methods may be used to artificially enhance the polarization of certain noble gas nuclei (such as
129
Xe or
3
He) over the natural or equilibrium levels, i.e., the Boltzmann polarization. Such an increase is desirable because it enhances and increases the MRI signal intensity, allowing physicians to obtain better images of the substances in the body. See U.S. Pat. No. 5,545,396 to Albert et al., the disclosure of which is hereby incorporated by reference as if recited in full herein.
A “T
1
” decay time constant associated with the hyperpolarized gas' longitudinal relaxation is often used to characterize the length of time it takes a gas sample to depolarize in a given situation. The handling of the hyperpolarized gas is critical because of the sensitivity of the hyperpolarized state to environmental and handling factors and thus the potential for undesirable decay of the gas from its hyperpolarized state prior to the planned end use, e.g., delivery to a patient for imaging. Processing, transporting, and storing the hyperpolarized gases—as well as delivering the gas to the patient or end user—can expose the hyperpolarized gases to various relaxation mechanisms such as magnetic field gradients, surface-induced relaxation, hyperpolarized gas atom interactions with other nuclei, paramagnetic impurities, and the like.
One way of reducing the surface-induced decay of the hyperpolarized state is presented in U.S. Pat. No. 5,612,103 to Driehuys et al. entitled “Coatings for Production of Hyperpolarized Noble Gases.” Generally stated, this patent describes the use of a modified polymer as a surface coating on physical systems (such as a Pyrex™ container) which contact the hyperpolarized gas to inhibit the decaying effect of the surface of the collection chamber or storage unit. Other methods for reducing surface-induced decay are described in co-pending and co-assigned U.S. Patent application Ser. No. 09/163,721 to Zollinger et al., entitled “Hyperpolarized Noble Gas Extraction Methods, Masking Methods, and Associated Transport Containers.” However, other relaxation mechanisms arise during production, handling, storage, and transport of the hyperpolarized gas. These problems can be particularly troublesome when storing the gases or transporting the hyperpolarized gas from a production site to a (remote) distribution and/or use site. In transit, the hyperpolarized gas can be exposed to many potentially depolarizing influences. There is, therefore, a need to provide improved ways to transport hyperpolarized gases so that the hyperpolarized gas is not unduly exposed to depolarizing effects during transport. Improved storage and transport methods and systems are desired so that the hyperpolarized product can retain sufficient polarization to allow effective imaging at delivery when stored or transported over longer transport distances in various (potentially depolarizing) environmental conditions, and for longer time periods from the initial point of polarization than has been viable previously.
One design used to provide a homogeneous field in a unit for transporting and storing hyperpolarized gas products is proposed by Hasson et al. in U.S. patent application Ser. No. 09/333,571 entitled “Hyperpolarized Gas Containers, Solenoids, Transport and Storage Devices and Associated Transport and Storage Methods.” This technique comprises a durable, safe, and convenient transport unit. However, a magnetic field generator within the transport unit used for generating the hyperpolarized gas magnetic holding field requires power to operate it. During transport or in storage, a convenient source of power may be difficult to find. Additionally, batteries with lengthy lifetimes suitable for hyperpolarized gas transport and storage can be heavy and are often large.
Another alternative is proposed by Aidam et al. in WO 99/17304. This reference proposes configuring a magnetically shielded container using opposing pole shoes to provide a unit for holding and transporting a chamber of polarized gas. Unfortunately, the shielded container is designed so as to require removal of one of the pole shoes to remove the gas chamber, thereby potentially sacrificing the homogeneity of the field. Additionally, the pole shoes can be dented or permanently magnetized during transport and storage. Physical deformation of the pole shoes which occurs during transport or normal use can unfortunately permanently destroy the homogeneity of the magnetic field. Furthermore, the pole shoes (which as described by Aidam et al. comprise mu metal or soft iron) can display hysteresis characteristics. This hysteresis can cause the pole shoes to be permanently magnetized if placed next to a magnetic field source, thereby acting as its own magnet and potentially deleteriously affecting the homogeneity of the resulting permanent magnet field.
A third alternative is proposed in U.S. patent application Ser. Nos. 08/989,604 and 09/210,020 to Driehuys et al. In these two patent applications, a magnetic field generator is described for the transport of hyperpolarized frozen xenon. The embodiment proposed by Driehuys et al. comprises a relatively small magnet yoke and two permanent magnets mounted opposite one another on the magnet yoke. This configuration produces a magnetic field with high field strength but relatively low homogeneity. While high magnetic field strength alone can generally maintain a highly hyperpolarized state in a solid hyperpolarized gas product, thawing prior to use produces a gaseous xenon product, which then typically requires that the field be homogeneous to reduce the likelihood of rapid depolarization due to gradient-induced relaxation.
OBJECTS AND SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a transport unit which can hold quantities of hyperpolarized gas for extended periods of time, such that the hyperpolarized gas is sufficiently viable to produce clinically useful images at a spatially and/or temporally separated point in time from the point of polarization.
It is also an object of the present invention to configure a transport unit such that it can be used to transport gas in a commercial shipping vehicle and/or store gas over relatively long periods of time (the latter particularly for when the polarized gas is not intended to be remotely shipped).
Another object of the present invention is to shield a quantity of hyperpolarized gas from deleterious environmentally-induced depolarizing events during transport and/or storage.
An additional object of the present invention is to configure a transport unit with permanent magnets which does not require disassembly to dispense the hyperpolarized gas therefrom or to insert hyperpolarized gas in containers therein.
It is also an object of the present invention to create a transport unit which is lightweight, compact, and easily transportable to facilitate ease of transport and s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hyperpolarized gas transport and storage devices and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hyperpolarized gas transport and storage devices and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hyperpolarized gas transport and storage devices and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3161746

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.