Liquid purification or separation – Processes – Chemical treatment
Reexamination Certificate
2002-10-29
2004-03-23
Hoey, Betsey Morrison (Department: 1724)
Liquid purification or separation
Processes
Chemical treatment
C210S758000, C210S761000, C210S175000, C210S198100, C210S205000
Reexamination Certificate
active
06709601
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates to hydrothermal oxidation processes and to equipment for facilitating hydrothermal oxidation reactions. More particularly, the invention relates to an arrangement for bringing an oxidant into contact with a reactant material to oxidize the reactant material in a hydrothermal process. The invention encompasses both hydrothermal treatment systems and methods.
BACKGROUND OF THE INVENTION
Hydrothermal oxidation involves bringing a reactant material to be oxidized, water, and an oxidant together under an elevated temperature and pressure to effect a partial or complete oxidation of the reactant material. Hydrothermal processes may be carried out at various combinations of temperature and pressure. For example, the reaction temperature may be below the critical temperature for water and the pressure may be below the critical pressure for water. Alternatively, the temperature or pressure, or both may be at or above the respective critical point for water. Although the critical temperature and pressure may vary somewhat depending upon other materials present with water, the critical temperature for water is approximately 705 degrees Fahrenheit and the critical pressure is approximately 3200 pounds per square inch.
Hydrothermal processes may be employed in many different applications. For example, hydrothermal processes may be used to treat wastewater containing organic and inorganic contaminants. In particular, municipal and industrial sewage sludge may be destroyed using a hydrothermal process to produce primarily heat energy, clean water, carbon dioxide gas, and residual minerals and salts. Heat energy from the hydrothermal process may be used to generate electricity. Also, organic fuels such as coal or petroleum may be oxidized in a hydrothermal process to produce heat energy that can be used for electrical power generation.
Hydrothermal oxidation occurring at conditions above both the critical temperature and pressure for water is commonly referred to as supercritical water oxidation or SCWO. Water at supercritical conditions (SCW) is neither a liquid nor a vapor, but can be properly characterized only as a supercritical fluid having a density significantly less than liquid water but significantly greater than water vapor. The density of SCW increases with increasing pressure at constant temperature. At very high pressures, greater than 40,000 psia for example, the density of SCW resembles that of liquid water. For the purposes of this discussion, SCW is assumed to exist at moderate temperatures between 705° F. and 1200° F. and moderate pressures of 3200-5000 psia. Nonpolar substances such as oxygen gas and most organic compounds are highly soluble in SCW. Due to the solubility of organic compounds and oxygen in SCW and the characterization of SCW as neither a liquid nor gas, SCW provides essentially a single-phase reaction environment that eliminates the relatively slow process of transferring reactants and products between separate gas and liquid phases. The single-phase reaction environment combined with a high reaction temperature in SCWO results in rapid and complete oxidation of organic compounds. Thus, it is desirable in a hydrothermal process to conduct at least part of the reaction at supercritical conditions in order to rapidly and more completely oxidize the given reactant material.
While nonpolar substances such as oxygen and most organic compounds are highly soluble in SCW, polar substances that may be encountered in hydrothermal processes have very low solubility in SCW. In particular, inorganic compounds such as salts have very limited solubility in SCW even though they may be very soluble in liquid water. Typically, the solubility of salt in water changes by relatively small amounts as the aqueous solution is heated. The solubility change may be seen as a slight increase or decrease in the solubility limit, depending on the specific salt. If the solution is heated to its critical temperature, the solubility of the salt will experience a sudden decrease as the water transitions from a polar solvent to a nonpolar solvent. The largest reduction in salt solubility generally occurs in the near-critical temperature range of 650° F. to 720° F. The temperature at which a given salt in an aqueous solution begins to experience the sudden decrease in solubility will be referred to in this disclosure and the accompanying claims as the “salt precipitation temperature.”
Although the solvent properties of SCW are very desirable in destroying organic compounds, the low solubility of inorganic salts in SCW has posed problems in prior SCWO systems. Salts may enter a SCWO system as part of the feed stream being treated or may form later in the reaction stream as a result of hydrolysis and the oxidation of organic heteroatoms such as sulfur, phosphorus, and nitrogen. Regardless of the source of the salts in the SCWO system, the salts precipitate from the reaction stream as the salt precipitation temperature of the solution is approached. The precipitated salts adhere to the internal surfaces of devices in the SCWO system to form scale. These scale deposits may occur in heat exchangers, heater coils, and reactors in a SCWO system, resulting in reduced heat exchange capacity, increased back pressure within the system, and ultimately, a completely plugged system. Thus, SCWO systems must be shut down periodically to remove scale deposits and thereby restore heat transfer efficiency and prevent plugging.
Numerous solutions have been proposed to overcome the salt scaling problem in hydrothermal processes. Some proposals include arrangements that treat rapid scale formation as an inevitability, and simply address the cleaning process. Other proposed solutions involve protecting the walls of the hydrothermal reactor to prevent deposition of precipitated materials. One of these wall-protecting solutions is described in U.S. Pat. No. 5,670,040, and involves conducting the supercritical oxidation reaction in a special platelet or transpiration tube. This transpiration tube includes openings that allow water to be continuously injected into the tube. The injected water is intended to form a protective barrier at the surface of the tube in order to prevent precipitated materials from adhering to the tube.
The previously proposed solutions to the scaling problem in hydrothermal processes, including the above described proposals, have generally proven unacceptable for various reasons. Most of the proposed solutions are costly and do not adapt themselves well to a continuously operating, robust system. Others simply do not work at the demanding conditions required for supercritical water oxidation. Considering the desirable attributes of supercritical water oxidation for waste treatment and other applications, there remains a need for a solution to the problem of rapid salt scaling in supercritical water oxidation systems.
SUMMARY OF THE INVENTION
The present invention provides hydrothermal treatment systems and methods that reduce or eliminate salt deposition (scaling) in the hydrothermal oxidation reactors, heat exchangers, heaters, and related equipment. A preferred hydrothermal treatment system according to the invention includes a contactor and reactor arrangement that receives a water stream, a first reactant material stream, and a second reactant material stream, with each stream pressurized to a processing pressure at or above the critical pressure for water. The contactor and reactor arrangement places the three input streams together so as to effect a hydrothermal reaction between the two reactant materials and thereby produce a hydrothermal reaction effluent.
As used in this document, “hydrothermal reaction” or “hydrothermal oxidation” means an oxidation reaction in the presence of water at an elevated temperature and pressure. A “first reactant material” means the feed material to be treated in the hydrothermal oxidation process, and may include water along with materials to be oxidized. A “second reactant material” refers to a suit
Griffith James Walton
Humphries Richard Wayne
Lawrence Justin Wade
Wofford, III William Tracy
Culbertson Russell D.
Hoey Betsey Morrison
Hydroprocessing, L.L.C.
Shaffer & Culbertson L.L.P.
LandOfFree
Hydrothermal treatment system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrothermal treatment system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrothermal treatment system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3282691