Hydroponic growing enclosure and method for the fabrication...

Plant husbandry – Water culture – apparatus or method – Cultivating chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C047S017000, C047S05900R, C047S06200C, C047S060000

Reexamination Certificate

active

06578319

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a hydroponic growing system and particularly to a fully integrated hydroponic process and apparatus which utilizes a universally available, feed-quality barley seed or other suitable seed to produce a young barley grass product for animal feed.
BACKGROUND ART
Hydroponics is the art of growing plants without soil and has been practised for many years. Hydroponic systems for growing grain and legume seed to a sprouted grass crop in a controlled environment has been practised in over 10 known applications over the last 40 years. The commercial success of these systems has been limited, though it has been clearly demonstrated that high-quality plants can be produced in a very short period of time using a controlled hydroponic system.
Generally, controlled hydroponic systems for this type of application consists of a controlled environmental enclosure in which the grain is germinated and grown on either racked trays or a moving mat type system. Most of these applications included some type of air conditioning and distribution system, a water supply and irrigation system and a controlled artificial or solar light source.
In U.S. Pat. No. 2,928,211 to I. Z. Martin, issued Mar. 15, 1960 and titled “Hydroponic Apparatus,” there is described a cabinet with a structure for supporting trays inside the cabinet. Water and nutrients are supplied to the trays through a spray system. An array of fluorescent lights illuminate the growing plant material in the trays. An air handling system includes a heat pump and heat exchanger with thermostatic controls and blowers.
U.S. Pat. No. 3,458,951 to I. Z. Martin, issued Aug. 5, 1969 and titled “Hydroponic Grass Unit,” describes a larger controlled environmental chamber for use on farms as a barley grass production chamber. The inside chamber is insulated and temperature, humidity, light, ventilation and irrigation are carefully controlled. The growing trays are in a fixed slopped rack to promote drainage toward the rear of the enclosure.
U.S. Pat. No. 3,807,088, issued Apr. 30, 1974 and titled “Controlled Environmental Hydroponic System,” shows a translucent building in which plants are arranged in longitudinally extended growing beds. The temperature and humidity within the building is controlled with a spray apparatus utilized to apply a fine mist over the growing plants when the sunlight becomes excessively intense.
U.S. Pat. No. 3,284,948, titled “Continuous Hydroponic System,” describes a system of operation in a controlled atmosphere which includes multi-layered, flexible open-mesh belts which serve as continuous growing beds. A seed hopper deposits grain in a uniform depth onto the moving belt. The seed is watered as the belt slowly moves from the seed input to the harvest side where the plant roots are stripped from the belt for use as feed.
U.S. Pat. No. 4,068,405 to Campbell et al, titled “Automatic Plant Food Production,” describes a controlled environment for growing plants. The enclosure has a plurality of artificial lights positioned over the growing region. Planting trays are mounted for automatic or controlled movement past the light sources, then to a work area for planting, cultivating, crop management and harvesting.
U.S. Pat. No. 5,073,401 to L. D. Mohr, titled “Automatic Hydroponic Growing System,” describes a sheet seed structure primarily for use in hydroponic systems. This pre-manufactured seed sheet is a substrate of biodegradable and digestible material such as cellulose and contains sterilized seed charged with a biologically active material. Pre-cut sheet is removed from a package and placed in a controlled growing chamber.
The U.S. Pat. No. 3,458,951 aforementioned was one of the first applications of a hydroponic barley grass factory designed as a walk-in plant capable of producing 2,000 pounds of seven day old barley grass per day.
Most of the known systems were plagued by either equipment failure, bacterial growth and/or material failure. A combination of these led to high maintenance and frequent system crashing. Most of these systems failed in a matter of months for one or a combination of the following:
Material Failure—The constant subjection of high humidity, air movement, intense lighting, heat generation from the growing beds and the use of chlorine and nutrients affected the application of many materials. Generally, operational failures occurred in a variety of coated carbon steels, aluminum alloys and elastomers. These failures occurred in walls and floors, particularly around joints and seams, in the growing trays and racking system, in the air ducting system, and particularly with the use of any mechanical apparatus in the growing chamber. The first units were applications of a slow-moving conveyor belt bed that took 7 days to move the 20 or 30 feet to harvest. Motors and chains were impossible to maintain in such a constant intense environment.
Germination—Most of these units gave no consideration to seed germination. The seed was either metered onto a belt or scooped directly into trays, where it germinated and grew over a 7-day cycle. In order to insure a high germination rate and high barley grass yield, a “seed-quality” barley had to be used for feed stock instead of the more globally available “feed-quality” seed. This led to production inefficiencies which were not acceptable in most agricultural applications.
Nutrients and Chlorine—Because most prior applications had no germination apparatus, nutrients were used to boost early-stage growth in order to achieve the sevenfold weight gain in 7 days as achieved without nutrients under ideal laboratory conditions. A combination of subsystem failures often brought on the rapid fungal growth in the chamber. Chlorine was introduced into several of these operating systems, creating other problems to the overall system operation.
Lighting—In order to intensity the operations of most systems, the growing beds were stacked and the lighting source was mounted in the walls on one or both sides of the chamber in order to illuminate all growing levels. The standard use of fluorescent tubes with ballasts or other bulbs with ballasts caused maintenance problems because of the difficult access to the walls behind the layered racking system. Sealing and resealing against moisture was a severe problem associated with most applications. Some units have employed a passive solar wall to avoid electrical expense and associated maintenance problems. These gains are lost in production control and output.
Air Handling and Treatment—Most of the prior are applications relied on standard packaged, externally mounted HVAC units to control the growing chamber temperature. Unfortunately, these units were designed for supplying heated or cooled air on demand, and not the high humidity inherent in growing rooms designed for applications in extreme external conditions. Many failures also occurred because of wrong material selection for internal air ducting equipment. Different types of heat exchangers and humidity control devices have been tried with the inherent loss of overall process control. Some systems have added carbon dioxide to the air flow in order to increase production.
Water Filtration and Treatment—Most of the prior art makes little or no mention of a comprehensive water management system. Of course, most of the system operational balance depends on a water source free from bacteria which could later cause and aggravate fungal and mold problems.
High production growing rooms demand continual operation, with a low daily operational time to harvest and seed and limited maintenance time.
SUMMARY OF INVENTION
It is a feature of the present invention to provide a self-contained hydroponic growing enclosure for the fabrication of animal feed grass and which substantially overcomes the disadvantages of the above-mentioned prior art.
Another feature of the present invention is to provide a method of hydroponic growing animal feed grass in an out-of-doors enclosure and independent of outside climatic conditions.
Another feature of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydroponic growing enclosure and method for the fabrication... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydroponic growing enclosure and method for the fabrication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydroponic growing enclosure and method for the fabrication... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3109361

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.