Hydrophobic preparations of hydrophilic species and process...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S094300, C424S812000, C514S002600, C514S003100, C514S006900, C514S008100, C514S021800, C514S04400A, C514S937000, C264S004100, C264S004300

Reexamination Certificate

active

06368619

ABSTRACT:

This application is a 371 of PCT/GB/94/02695 filed Nov. 14, 1994.
The present invention relates to preparations of substances in hydrophobic solvents in which they would not normally be soluble and to processes for obtaining these preparations. In particular, the invention relates to preparations of hydrophilic species in hydrophobic solvents such as oils.
The invention in particular applies to hydrophilic macromolecules which would not normally be soluble in oils or other hydrophobic solvents.
For many applications, e.g in the pharmaceutical sciences, in food technology or the cosmetics industry, work with proteins and similar macromolecules presents problems because their hydrophilicity and high degree of polarity limit the extent to which they can interact with or incorporate into lipid phases. Many natural systems employ lipidic barriers (eg skin, cell membranes) to prevent access of hydrophilic molecules to internal compartments; the ability to disperse proteins in lipidic vehicles would open up a new route to introduction of these macromolecules into biological systems, whereby the lipid medium containing the protein can integrate with the hydrophobic constituents of barriers, instead of being excluded by them.
Another area where dissolution of proteins into oils may confer advantage is for the use of enzymes in organic phases. Enzymic syntheses are becoming increasingly important compared to chemical processes because of their much lower energy needs, greater substrate and product specificities, high yields, and the fact that many reactions are catalysed which are impossible by chemical means. Recent findings that enzymes can remain active in organic environments have opened up many additional possibilities. Thus, reactions involving lipophilic substrates and products may be catalysed effectively, and enzyme stability is often much greater than in aqueous environments, allowing them to be used in much more extreme conditions such as at high temperature. A very important aspect is that reactions involving hydrolytic enzymes such as lipases and peptidases can preferentially go in the reverse direction in low water environments, thus enabling the synthesis of a wide range of industrially important compounds. Another application is where a complex chain of reactions is involved in which the multiple catalytic units need to be maintained in close proximity to each other. Such might be the case in light-initiated redox reactions. An additional possibility is the controlled production of nanoparticulates in oil phase, using enzymes to induce (mineralisation by action on organometallic substrates. The preparation of a stable dispersion of preformed nanoparticulates in oil phase may also be advantageous for the performance of certain surface-catalysed reactions.
Dispersion of hydrophilic substances in oil phase rather than aqueous media confers other benefits in terms of increasing their stability with respect to temperature-mediated denaturation, hydrolysis, light sensitivity etc. Oils can be chosen which remain fluid over a wider temperature range than aqueous solutions, or that have a higher viscosity, resulting in greater protection against physical damage. In mixed-phase systems, sequestration of proteins in oil can limit mutually harmful interactions—eg oxidation—with water-soluble compounds.
There are examples of formulations containing both macromolecules and oil and one such example is disclosed in EP-A-0366277. The formulation disclosed in this document is an emulsion having both a hydrophobic and a hydrophilic phase, wherein the hydrophobic phase contains chylomicra or chylomicron-forming lipids. However, the macromolecule is dissolved in the hydrophilic phase not in the hydrophobic phase.
EP-A-0521994 also relates to a composition suitable for the oral delivery of macromolecules which comprises a biologically active material in association with lecithin or a compound capable of acting as a precursor for lecithin in vivo. All of the compositions exemplified are formulations which comprise a hydrophilic and a lipophilic phase. Once again, in this prior art document, the macromolecule is dissolved in the hydrophilic phase rather than in the lipophilic phase.
Although the formulations mentioned above do contain both macromolecules and oils, it is significant that in all cases the macromolecule is dissolved in the hydrophilic rather than in the lipophilic phase. Attempts to form true solutions of macromolecules in oils have met with limited success.
The present invention relates to the surprising discovery that if a hydrophilic species is mixed with an amphiphile under certain conditions, the resultant composition will be readily soluble in lipophilic solvents as oils.
In a first aspect of the present invention there is provided a process for the preparation of a single phase hydrophobic preparation comprising a hydrophilic species, in a hydrophobic solvent, the process comprising:
(i) associating the hydrophilic species with an amphiphile in a liquid medium such that, in the liquid medium, there is no chemical interaction between the amphiphile and the hydrophilic species;
(ii) removing the liquid medium to leave an array of amphiphile molecules with their hydrophilic head groups orientated towards the hydrophilic species; and
(iii) providing a hydrophobic solvent around the hydrophilic species/amphiphile array.
In the context of the present invention, the term “chemical interaction” relates to an interaction such as a covalent or ionic bond or a hydrogen bond. It is not intended to include van der Waals forces or other interactions of that order of magnitude.
It has been found that the order in which the components of the preparation are mixed is particularly important. In one attempt to prepare a molecular dispersion, we mixed a macromolecular compound (an example of a hydrophilic species) with the hydrophobic solvent and then added amphiphile whilst in an alternative procedure, a macromolecular compound was added to a mixture of the hydrophobic solvent and the amphiphile. However, both of these approaches result in the production of a grainy dispersion of the macromolecular compound in the solvent rather than in a true molecular dispersion. It was found that only by adding the macromolecular compound to the amphiphile in such a way that an array is produced in which the hydrophilic head groups of the amphiphile are orientated towards the macromolecule and then dissolving this array in the hydrophobic solvent, could a single phase preparation be produced.
As mentioned above, the hydrophilic species and the amphiphile are associated in a liquid medium and in many cases the array is formed in the liquid medium before it is removed. This occurs when the amphiphile and liquid medium are such that the array is formed in the liquid medium even in the absence of a hydrophilic species.
In the present invention the term “hydrophilic species” relates to any species which is generally soluble in aqueous solvents but insoluble in hydrophobic solvents. The range of hydrophilic species of use in the present invention is diverse but hydrophilic macromolecules represent an example of a species which may be used.
A wide variety of macromolecules is suitable for use in the present invention. In general, the macromolecular compound will b e hydrophilic or will at least have hydrophilic regions since there is usually little difficulty in solubilising a hydrophobic macromolecule in oily solutions. Examples of suitable macromolecules include proteins and glycoproteins, oligo and polynucleic acids, for example DNA and RNA, polysaccharides and supramolecular assemblies of any of these including, in some cases, whole cells or organelles. It may also be convenient to co-solubilise a small molecule such as a vitamin in association with a macromolecule, particularly a polysaccharide such as a cyclodextrin. Small molecules such as vitamin B12 may also be chemically conjugated with macromolecules and may thus be included in the compositions.
Examples of particular proteins which may be successfull

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrophobic preparations of hydrophilic species and process... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrophobic preparations of hydrophilic species and process..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrophobic preparations of hydrophilic species and process... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903091

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.