Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Clay or inorganic aluminosilicate salt component
Reexamination Certificate
2001-01-30
2003-12-09
Boyer, Charles (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Clay or inorganic aluminosilicate salt component
C510S276000, C510S278000, C510S315000, C510S323000, C510S377000, C510S532000
Reexamination Certificate
active
06660713
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to cleaning and deodorizing compositions comprising hydrophobic, nanozeolites for odor control on substrates. Specifically, this invention is related to cleaning and deodorizing compositions for malodor control comprising nanozeolites and methods for removing odors from substrates using said compositions.
BACKGROUND OF THE INVENTION
The suppression or elimination of odors, particularly undesirable odors, has been the objective of countless investigations. Malodors originate from many sources but those that are of most consequence to human beings are those involving occasional or repeated daily exposure. As a consequence of normal daily activity, various substrates including fabrics, upholstery, carpeting, and other substrates (i.e. pets) are exposed to a variety of malodors, some of which are produced by humans, as in the case of perspiration, and some are environmentally generated malodors (e.g. cigarette smoke).
Cultural and aesthetic standards have influenced the permissible level of human and environmental malodors and control of these odors has been the focus of investigation for many centuries. In general, these investigations have been focused on either of two approaches, namely (a) odor masking, in which a substance of strong yet relatively pleasant odor is introduced into the proximity of a less pleasant odor source with the intent of overburdening the olfactory receptors with the dominant pleasant odor, or (b) sequestering the undesired odorous substance in a non-volatile form either by chemical reaction, adsorption or absorption on a sorbent material exhibiting a sorptive preference for the odorous substance. One additional approach that has been investigated is preventing the formation of the odors altogether.
Odor masking, although effective in the short term, has certain limitations. First, masking does not remove or eliminate the source of the malodor. Secondly, when scents and perfumes are used to overcome malodors, the user must make sure an effective and constant level of masking agent is present to avoid too low a level of masking agent that may not be sufficient to cover-up the malodor. In turn, too high a level of masking agent may itself produce an undesirable effect. The premature depletion of the masking agent can be an additional concern.
Sequestration has thus become the method of choice for elimination and control of both human and environmental malodors. The more effective approach has been to sequester the undesired malodor primarily by adsorption.
By far the most commonly employed of the solid adsorbents is activated charcoal or active carbon, although silica gel, activated alumina, kieselguhr, Fullers earth and other clay minerals and zeolites, alone or in combination, have also been proposed as odor “adsorbents”. In U.S. Pat. No. 4,437,429, the use of a hydrated zeolite in admixture with clay is proposed as being particularly useful for the control of odors from pet litter. Though it is observed that the use of zeolites by themselves as litter material has generally been unsuccessful due to their poor water adsorption properties as compared with clays. The best remedy for substrate malodor remains the effective sequestering of malodorous molecules as they are either formed or come into contact with the substrate.
The desire to provide a laundry detergent that provides laundered substrates with malodor control that does not involve masking the malodors with perfumes, led to the investigation of adsorbents, chelants and other odor control agents. Activated charcoal, one of the most efficient adsorptive materials, along with finely divided aluminosilicate adsorbents and clays, have been excluded from use because they are either not compatible with substrate color (i.e. black charcoal on white clothing or white zeolite powder on dark clothing) or they are not compatible with the aqueous delivery system normally associated with laundry detergents.
Compounds such as cyclodextrin, have also recently been used as odor adsorbents because of their ability to bind a variety of odors in their “hydrophobic” cavity. Nevertheless, because the pores of cyclodextrin are relatively large, many small molecules, especially those bearing thiol, sulfide or amine functionality are not bound effectively by cyclodextrin, necessitating the use of odor control adjuvants such as polyacrylic acid. In addition, odor control with cyclodextrin is only possible in the wet state, not in the dry state. This is a result of the fact that odor molecules must first transition into the aqueous phase before being adsorbed by the cyclodextrin molecule. This places unwanted limitations on its uses as an odor control agent.
Aluminosilicates in the form of microporous zeolites have long been of value in laundry detergent compositions as builders. They serve in general as ion exchange agents whose primary function is to remove calcium and magnesium ions from the laundry wash liquor and replace them with sodium, potassium or other suitable cations that do not decrease the surface activity of laundry detergent surfactants. The use of zeolites for adsorption of malodors, however, is limited by the fact that traditional zeolites leave a white residue on substrates treated with them.
Adsorption, and hence the sequestration, of odors such as ammonia as described in U.S. Pat. No. 5,013,335 is accomplished by zeolitic material where selected synthesis and calcination affords porous molecular sieves with a pore size large enough to accommodate ammonia molecules. However, when applied to adsorption of molecules typically responsible for malodor, these common microporous zeolites fail in several ways. The surface of high aluminum containing zeolites have an abundance of bound cations and together with the associated “water of hydration” produce a hydrophilic surface barrier not compatible with the adsorption mechanism associated with the diffusion of larger, non-polar, non-charged organic species at the solid/air interface.
It is desirable to be able to apply a uniform coating of a malodor control agent to the entire substrate, which provides removal of odors already present on the substrate as well as preventing new environmental odors from attaching to the substrate.
Therefore, the need still remains for an effective malodor control composition which can be uniformly applied to a substrate, remains invisible to the naked eye and has the ability to adsorb/remove a broad range of consumer relevant odors. There is additionally a need for a composition, which can deliver a strong/irreversible adsorption of malodor in both the wet and dry states to provide removal of odors and prevent initial deposition of odor molecules on substrates.
SUMMARY OF THE INVENTION
It has now been surprisingly discovered that cleaning and deodorizing compositions comprising nanozeolites effectively control malodor on substrates. These nanozeolites may be delivered via inclusion in a detergent composition during a laundry wash process, or may be directly applied to substrates (e.g., by spraying on the substrate in need of malodor control).
The present invention relates to laundry detergent compositions comprising nanozeolites for control of malodorous compounds that come into contact with a substrate in the course of normal usage. The nanozeolites useful in the present invention have at least one pore system with pore sizes from about 3 to about 12 angstroms.
The compositions of the present invention when practiced in the area of laundry detergent compositions will optionally comprise, detersive surfactants, builders, buffers, bleaching compounds, bleach activators, chelating agents, anti-redeposition agents, dispersents, brightners, suds suppressers, hydrotropes, soil release agents, fabric softeners, filler salts, and mixtures thereof, in addition to the nanozeolites. Compositions of the present invention therefore preferably comprises from about 1% to about 99% of such adjunct ingredients.
In an alternative embodiment of the present invention the composition comprises from abou
Carter John David
Corkery Robert
Ma Jun
Rohrbaugh Robert Henry
Boyer Charles
Dinsmore & Shohl LLP
The Procter & Gamble & Company
LandOfFree
Hydrophobic nanozeolites for malodor control does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrophobic nanozeolites for malodor control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrophobic nanozeolites for malodor control will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3161944