Liquid purification or separation – Processes – Treatment by living organism
Reexamination Certificate
2001-05-02
2003-10-14
Upton, Christopher (Department: 1724)
Liquid purification or separation
Processes
Treatment by living organism
C210S616000, C210S747300, C435S262000, C435S264000
Reexamination Certificate
active
06632363
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of hydrophobic compositions and methods of use in water applications.
BACKGROUND OF THE INVENTION
Microbes and microbial preparations are becoming increasingly important and effective in combating pests and diseases. One of the most important factors in the efficacy of microbial control of pests or diseases is the application and distribution of the microbes to the targeted pest or disease. Current techniques for the application and distribution of microbes to water-related applications are deficient and hinder the effectiveness of the application and distribution of the microbes.
In applications to bodies of water, lakes, rivers, streams, canals, ponds, tanks, reservoirs, and water films on the surface of plants it is difficult to evenly apply microbes over the entire surface area of the body of water or plant surface and throughout the water columns beneath the water surface. For example, it is difficult to control algae blooms, which normally occur in the top layers of water, unless there is effective distribution of the microbes over the surface layers followed by adequate movement of the microbes into the upper water layers where the algae are residing.
Currently, the following methods are employed to control algae blooms and other unwanted plants and organisms. One method involves the use of chemical poisons. For example, the most commonly used algaecides include copper sulfate and diuron which have detrimental environmental impact, are regulated by the EPA as well as state agencies, require expert handling, and are considered pollutants. Their application often requires the use of a boat or other device to deliver the pesticide to the target organism as persons must spray the treatment directly onto the target organism or plant. This application is very labor intensive, time consuming, and a danger to persons applying the product. These and other pesticides, herbicides, and pollutants for the control of algae or other noxious plants and organisms are constantly under heavy scrutiny by municipal, state, and federal regulators nationally.
Another current method involves the use of colorings and shadings that provide limited control of the targeted organism or plant through prevention (blocking sunlight that is an essential stimulant for many algae that thrive on photosynthesis). Consequently, beneficial and ornamental water plants requiring sunlight are also deprived of needed light and their performance is also inhibited. Additionally, water clarity is sacrificed and unnatural colored water is created by the dyes, which is undesirable in many circumstances.
Another method involves the application of ultra-violet light in the form of a pre-filter to the area water gardening and koi ponds. Ultra-violet filtration, as it is commonly called, kills beneficial and bad bacteria alike, creating a pond more reliant on chemical fixes since natural pond balancing, nitrogen fixing, and micro-flora are destroyed. Additionally, ultra-violet filtration can not be practically applied to larger bodies of water or naturally sustaining bodies of water.
Another current method involves microbial inoculation, which has generally taken two forms, that of a liquid solution of microbes and a granular blend. Neither form offers an effective distribution method. Extensive mechanical agitation is required in order to distribute a liquid microbial inoculate throughout a body of water. Without extensive mechanical agitation, these liquid microbial formulas tend to remain concentrated at the origin of application. Additionally, liquid microbial formulas with viscosities that are greater or less than water will tend to hover or sink in a specific location. The other form of microbial inoculate currently available is granular. These granular formulas are typically similar in weight to that of beach sand. When introduced into the treatment waters, these granular formulations fall directly to the bottom. Only a very tiny percentage of the granular formulation (typically in the form of wheat germ) is left on the surface immediately following treatment. This method of granular microbial inoculation is largely ineffective, as the beneficial microbes are not effectively nor efficiently delivered to the target organism (alga, fungi, weeds, diseased fish, etc).
Each of the methods described above are deficient in their effectiveness since the composition applied to the algae, noxious weed, or target organism is concentrated at the origin of application and the poisons, antibiotics, or microbes are not evenly distributed. Further, since the application of the composition is limited to the localized area of application, only those algae or other plants or organisms residing in that localized area of the body of water will be treated sufficiently with the correct dosage. The target organisms residing in the adjacent water columns will not be treated as effectively. Thus, the current methods are inefficient for the treatment of algae, plants, fish, or fungi in water applications.
Compositions and methods for delivering microbes to water applications uniformly and efficiently over the water surface and down through the water column for the treatment of pests or diseases would offer substantial benefits over the current techniques. Accordingly, an object of this invention is a composition for use in water applications, wherein the composition distributes microbes uniformly and efficiently over a water surface and down through the water column. Another object of the present invention is a method for applying microbes uniformly and efficiently over a water surface and down through the water column. Another object of the present invention is to deliver microbes proportionately to the target alga, weeds, or organisms by blanketing the target pest effectively with the microbe.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a composition and method by which microbes can be uniformly and efficiently distributed over a water surface and released into the body of water.
One aspect of the invention is a hydrophobic composition used for the delivery of a microbial agent to water applications comprising a hydrophobic carrier and a microbial agent. Another aspect of the invention is a method of administering a microbial agent to a water application uniformly and efficiently by introducing a hydrophobic composition containing a microbe to the water application and delivering it to a target plant or organism. Another aspect of the invention is a method for improving the water quality in a water application by introducing hydrophobic compositions to the water application. Another aspect of the invention is a method for improving the water quality in a water application by introducing hydrophobic compositions containing strains of
Bacillus subtilis
to the water application.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This invention relates to compositions and methods for uniformly and efficiently delivering microbial agents to water applications.
A preferred aspect of the invention is a hydrophobic composition for effectively distributing a microbial agent to a water application comprising a hydrophobic carrier and a microbial agent. A preferred hydrophobic carrier is preferably selected from a group comprising carbon minerals, leonardite, plastic, wood powder, plant materials, clay and combinations thereof. The carbon minerals are preferably selected from a group comprising coal, charcoal, graphite, carbon black, oil, straw and combinations thereof. Most preferably, the hydrophobic carrier comprises activated carbon or charcoal specifically designed for distribution onto and into water applications. The carbon formulations also confer UV protection to the microbial agent during exposure to sunlight and act as an inoculum source for the microbial agent as it passes into the liquid medium. Carbon in various forms has been used in commercial water treatment previously, but as a filter or absorbent. The hydrophobic properties of the hyd
Grech Nigel M.
Lin Ming Tsuan
Lin Shinn Liang
Grotek, Inc.
Perkins Coie LLP
Upton Christopher
Wise Michael J.
LandOfFree
Hydrophobic compositions and methods of use in water... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrophobic compositions and methods of use in water..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrophobic compositions and methods of use in water... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3149281