Hydrokinetic torque converter

192 clutches and power-stop control – Vortex-flow drive and clutch – Including drive-lockup clutch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S200000

Reexamination Certificate

active

06321891

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to improvements in hydrokinetic torque converters of the type often employed in the power trains of motor vehicles. More particularly, the invention relates to improvements in hydrokinetic or hydrodynamic torque converters of the type wherein a rotary housing normally confines a pump, a turbine, a stator (if necessary), and a suitable lockup clutch or bypass clutch. The pump can receive torque from a prime mover (such as the combustion engine of a motor vehicle), for examples by way of the housing, and the turbine can drive a rotary part, e.g., the input shaft of a transmission in a motor vehicle. It is also known to equip a hydrokinetic torque converter with a torsional vibration damper which is installed in the path of transmission of torque between the input and output members of the torque converter. As a rule, the turbine is installed in the housing between the pump and a wall of the housing, normally a wall confronting the output element of the prime mover and being disposed between such output element and the turbine, as seen in the axial direction of the housing.. The lockup clutch is engageable and disengageable in response to a change of fluid pressure in a compartment which is provided in the housing between the turbine and a wall of the housing.
Published German patent application No. 44 20 959 discloses a hydrokinetic torque converter employing a lockup clutch wherein a friction lining is applied to a piston which is movable relative to the turbine in the axial direction of the pump. For example, the lockup clutch can employ an annular piston.
A drawback of the just outlined torque converters is that the utilization of a piston which is movable in the housing in the axial direction of the turbine and pump renders it necessary to increase the space requirements of the torque converter accordingly (as seen in the axial direction of the pump and turbine) This is in contrast with the trend toward larger and more powerful engines and toward larger transmissions, i.e., it is desirable to reduce the space requirements of the power train between the engine and the transmission to a minimum.
OBJECTS OF THE INVENTION
An object of the invention is to provide a hydrokinetic torque converter which is constructed and assembled in such a way that its space requirements in the direction of the axis of rotation of the pump and turbine are considerably below those of heretofore known torque converters.
Another object of the invention is to provide a hydrokinetic torque converter whose space requirements in the direction of the common axis of the pump and turbine are less than those of conventional torque converters even if the improved torque converter is equipped with one or more torsional vibration dampers.
A further object of the invention is to simplify the making and the assembly of hydrokinetic torque converters.
An additional object of the invention is to provide a hydrokinetic torque converter wherein the total number of parts is less than that in heretofore known torque converters.
Still another object of the invention is to provide a novel and improved distribution of component parts in the housing of a hydrokinetic torque converter.
Another object of the invention is to provide a novel and improved lockup clutch or bypass clutch for use in the above outlined improved hydrokinetic torque converter.
A further object of the invention is to provide a power train which embodies the above outlined hydrokinetic torque converter.
An additional object of the invention is to provide a novel and improved torsional vibration damper for use in the above outlined hydrokinetic torque converter.
Still another object of the invention is to simplify the configuration and the manufacturing cost of various parts in the above outlined improved hydrokinetic torque converter.
SUMMARY OF THE INVENTION
One feature of the invention resides in the provision of a novel and improved compact hydrokinetic torque converter of the type comprising a housing, a turbine and a rotary pump in the housing, means for rotating the pump (particularly by way of the housing), and a lockup clutch or bypass clutch (hereinafter called lockup clutch) in the housing. The torque converter can further comprise a stator installed in the housing between the pump and the turbine, as seen in the direction of the axis of rotation of the pump. A torsional vibration damper can be installed between the input and output members of the torque converter.
In accordance with one feature of the invention, the improved hydrokinetic torque converter comprises a housing, a pump provided in the housing and being rotatable about a predetermined axis, means for rotating the pump about such axis (the means for rotating can comprise a prime mover, such as the combustion engine of a motor vehicle, which has a rotary output element serving to transmit torque to the pump, e.g., by way of the housing), a turbine disposed in the housing between the pump and a wall of the housing (particularly a wall which is adjacent the aforementioned rotary output element of the prime mover), as seen in the direction of the axis, and a torque transmitting lockup clutch in the housing. The turbine is movable in the housing in the direction of the axis to thus select the magnitude of the torque being transmitted by the clutch, and the clutch includes an element (e.g., a carrier element in the form of a lamina) having at least one friction surface and sharing the axial movements of the turbine relative to the housing.
A stator (which is optional, at least in certain instances) can be installed in the housing between the pump and the turbine, as seen in the direction of the axis. A torsional vibration damper (or at least one torsional vibration damper) can be installed in the housing between rotary input and output members of the torque converter. The aforementioned carrier element can be of one piece with the turbine, or the torque converter further comprises means for securing a separately produced carrier element to the turbine. The housing and the turbine can define a compartment which is disposed between the aforementioned wall of the housing and the turbine, as seen in the axial direction of the pump; such compartment can receive a pressurized fluid to thus vary the condition of the lockup clutch toward a more pronounced engagement or toward a less pronounced engagement, depending on the magnitude of the torque which is to be transmitted by the clutch.
Another feature of the invention resides in the provision of a hydrokinetic torque converter which comprises a housing, a pump disposed in the housing and rotatable about a predetermined axis, means for rotating the pump about the axis, a turbine provided in the housing between the pump and a wall of the housing, as seen in the direction of the axis, and a torque transmitting lockup clutch in the housing. The turbine is at least substantially fixed in the housing against movement in the direction of the axis, and the lockup clutch includes an element having at least one friction surface and being movable relative to the turbine in the direction of the axis of the pump to thus select the magnitude of torque being transmitted by the clutch.
Such torque converter can also comprise a stator in the housing as well as at least one torsional vibration damper between the input and output members of the torque converter.
A further feature of the invention resides in the provision of a hydrokinetic torque converter which comprises a hosing, a pump provided in the housing and being rotatable about a predetermined axis, means for rotating the pump about the axis, a rotary turbine installed in the housing between the pump and a wall of the housing, as seen. in the direction of the axis of the pump, a rotary member which is driven by the turbine, and a lockup clutch in the housing. The turbine is movable in the housing in the direction of the axis of the pump through a distance between zero and a predetermined value to thus select the magnitude of the torque to be transmitted

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrokinetic torque converter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrokinetic torque converter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrokinetic torque converter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599887

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.