Hydrogen cooled hydride storage unit incorporating porous...

Heat exchange – Intermediate fluent heat exchange material receiving and... – Reversible chemical reaction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S010000, C062S477000, C062S476000

Reexamination Certificate

active

06823931

ABSTRACT:

FIELD OF THE INVENTION
The instant invention relates generally to hydrogen storage units and more specifically to hydrogen gas cooled storage units. The storage unit includes porous material which encapsulates the hydrogen storage alloy, thereby preventing loose particles from escaping when using excess hydrogen flow to transfer the heat of hydride formation from the storage material to the excess hydrogen and remove it from the storage unit.
BACKGROUND OF THE INVENTION
The instant patent application for the first time, describes a hydrogen storage unit useful for a hydrogen-based economy. The storage unit allows for fast and efficient cooling and/or heating thereof using gaseous hydrogen as a direct, convective heat transfer medium. The instant storage element makes it possible to efficiently and economically transfer heat between subsystems of a complete infrastructure system. Such an infrastructure system (from “source to wheel”), is the subject of copending U.S. application Ser. No. 09/444,810, entitled “A Hydrogen-based Ecosystem” filed on Nov. 22, 1999 for Ovshinsky, et al. (the '810 application), which is hereby incorporated by reference. This infrastructure, in turn, is made possible by hydrogen storage alloys that have surmounted the chemical, physical, electronic and catalytic barriers that have heretofore been considered insoluble. These alloys are fully described in copending U.S. patent application Ser. No. 09/435,497, entitled “High Storage Capacity Alloys Enabling a Hydrogen-based Ecosystem”, filed on Nov. 6, 1999 for Ovshinsky et al. (“the '497 application”), which is hereby incorporated by reference. The '497 application relates generally and specifically to alloys which solve the, up to now, unanswered problem of having sufficient hydrogen storage capacity with exceptionally fast kinetics to permit the safe and efficient storage of hydrogen to provide fuel for a hydrogen based economy, such as powering internal combustion engine and fuel cell vehicles. In the '497 application the inventors for the first time disclosed the production of Mg-based alloys having both hydrogen storage capacities higher than about 6 wt. % and extraordinary kinetics. This revolutionary breakthrough was made possible by considering the materials as a system and thereby utilizing chemical modifiers and the principles of disorder and local order, pioneered by Stanford R. Ovshinsky, in such a way as to provide the necessary catalytic local order environments, such as surfaces and at the same time designing bulk characteristics for storage and high rate charge/discharge cycling. In other words, these principles allowed for tailoring of the material by controlling the particle and grain size, topology, surface states, catalytic activity, microstructure, and total interactive environments for storage capacity.
The combination of the '810 and the '497 applications solves the twin basic barriers which have held back the use of the “ultimate fuel,” namely hydrogen storage capacity and a hydrogen infrastructure. With the use of the alloys of the '497 application, hydrogen can be shipped safely by boats, barges, trains, trucks, etc. when in solid form. However, the infrastructure of the '810 application requires thermal management and efficient heat utilization throughout the entire system. The instant invention makes the necessary heat transfer between the subsystems of the infrastructure simple, efficient, and economic.
As the world's population expands and its economy increases, the atmospheric concentrations of carbon dioxide are warming the earth causing climate change. However, the global energy system is moving steadily away from the carbon-rich fuels whose combustion produces the harmful gas. Experts say atmospheric levels of carbon dioxide may be double that of the pre-industrial era by the end of the next century, but they also say the levels would be much higher except for a trend toward lower-carbon fuels that has been going on for more than 100 years. Furthermore, fossil fuels cause pollution and are a causative factor in the strategic military struggles between nations. Furthermore, fluctuating energy costs are a source of economic instability worldwide
For nearly a century and a half, fuels with high amounts of carbon have progressively been replaced by those containing less. First wood, which is high in carbon, was eclipsed in the late 19
th
century by coal, which contains less carbon. Then oil, with a lower carbon content still, replace coal in the 1960's. Now analysts say that natural gas, lighter still in carbon, may be entering its heyday, and that the day of hydrogen—providing a fuel with no carbon at all—may at last be about to dawn. As a result, experts estimate the world's economy today burns less than two-thirds as much carbon per unit of energy produced as it did in 1860, despite the fact that carbon based fuels are still being used by the automotive industry.
In the United States, it is estimated, that the trend toward lower-carbon fuels combined with greater energy efficiency has, since 1950, reduced by about half the amount of carbon spewed out for each unit of economic production. Thus, the decarbonization of the energy system is the single most important fact to emerge from the last 20 years of analysis of the system. It had been predicted that this evolution will produce a carbon-free energy system by the end of the 21
st
century. The instant invention helps to shorten that period to a matter of years. In the near term, hydrogen will be used in fuel cells for cars, trucks and industrial plants, just as it already provides power for orbiting spacecraft. But ultimately, hydrogen will also provide a general carbon-free fuel to cover all fuel needs.
As noted in recent newspaper articles, large industries, especially in America, have long been suspicious of claims that the globe is warming and have vociferously negated the science of climate change. Electric utilities, among others, initially took the position that international treaties on climate change would cut economic growth and cost jobs. A dramatic shift has now occurred, in which the problems are finally being acknowledged and efforts are at last being undertaken to solve them. Therefore, it is very encouraging that some of the world's biggest companies, such as Royal Dutch/Shell and BP Amoco, two large European oil firms, now state plainly what was once considered heresy: global warming is real and merits immediate action. A number of American utilities have vowed to find ways to reduce the harm done to the atmosphere by their power plants. DuPont, the world's biggest chemical firm, has even declared that it will voluntarily reduce its emissions of greenhouse gases to 35% of their level in 1990 within a decade. The automotive industry, which is a substantial contributor to emissions of greenhouse gases and other pollutants (despite its vehicular specific reductions in emissions), has now realized that change is necessary as evidenced by their electric and hybrid vehicles. In this field, the assignee of the subject invention, has developed the Ovonic nickel metal hydride battery, the enabling battery making electric and hybrid vehicles possible.
FIG. 1
, taken from reliable industrial sources, is a graph demonstrating society's move toward a carbon-free environment as a function of time starting with the use of wood in the early 1800s and ending in about 2010 with the beginning of a “hydrogen” economy. In the 1800s, fuel was primarily wood in which the ratio of hydrogen to carbon was about 0.1. As society switched to the use of coal and oil, the ratio of hydrogen to carbon increased first to 1.3 and then to 2. Currently, society is inching closer to the use of methane in which the hydrogen to carbon ratio is further increased to 4 (methane has serious problems with safety, cost and infrastructure). However, the ultimate goal for society is to employ a carbon-free fuel, i.e., the most ubiquitous of elements, pure hydrogen. The obstacle ha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrogen cooled hydride storage unit incorporating porous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrogen cooled hydride storage unit incorporating porous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrogen cooled hydride storage unit incorporating porous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3305713

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.