Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Web – sheet or filament bases; compositions of bandages; or...
Reexamination Certificate
1999-06-10
2001-05-08
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Web, sheet or filament bases; compositions of bandages; or...
C424S445000, C428S338000, C428S483000, C522S075000, C522S083000
Reexamination Certificate
active
06228390
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to novel processes for adhering polymeric hydrogels to an adhesive coated surface of a substrate and to novel hydrogel laminates and bandages and methods for forming the same.
BACKGROUND OF THE INVENTION
The integumentary system is the exterior organ that, although often taken for granted, is vital to physical well being. The most obvious function of the integument is to protect against infection. Any alteration in the integrity of the skin compromises this natural defense. To minimize the risk of soft tissue infection, it is desirable to protect burns and wounds from infectious agents such as airborne fungi, bacteria and viruses. Traditional gauze type dressings are inadequate because they do not exclude infectious agents. Further, exudation from many types of skin lesions is normal during the healing process. If wound exudate has dried and consolidated the gauze dressing and wound, removal of the dressing is not only painful, it interferes with the healing process.
The use of hydrogels in the treatment and management of burns and wounds is well known in the art. Hydrogel dressings are desirable, in part, because they provide protection against infectious agents. Hydrogel dressings are further desirable because wound exudate does not generally dry and consolidate with hydrogels or hydrogel laminates. Consequently, removal of a hydrogel dressing is usually neither painful nor detrimental to the healing process. It has been suggested that hydrogel dressings may be particularly desirable for treatment of burns because they may accelerate healing. Although the mechanism by which hydrogels stimulate healing is not fully elucidated, it is documented that the high water content of hydrogels enables them to effect an immediate cooling of the wound surface and to sustain the reduced temperature for up to six hours. Davis , et al., “A New Hydrogel Dressing Accelerates Second-Degree Burn Wound Healing,” Poster Presentation, Wound Healing Society First Annual Meeting, Galveston, Tex., Feb. 6, 1991. In addition, water swollen hydrogels may provide a cushioning effect that helps protect the burn or wound from physical trauma.
U.S. Pat. No. 4,438,258 relates to hydrogels which may be used as interfaces between damaged skin tissue and its external environment. As disclosed therein, hydrogels may be polymerized about some type of support, such as a mesh of nylon, use d as an unsupported film spun in fibers and woven into a fabric, or used as a powder. Further, hydrogels may be used to provide a controlled release of a medical composition.
U.S. Pat. No. 4,552,138 discloses a wound dressing material of at least one layer of a polymeric, hydrophilic gel wherein the gel is cross-linked and acetalized with formaldehyde. As disclosed therein, a gel film may be formed by spreading a pre-crosslinked gel on an auxiliary carrier, drying and at the same time cross-linking the same by heat treatment. As used in this disclosure, uncrosslinked polyvinyl alcohol is dissolved in water, acidified, preferably by hydrochloric acid, and combined with an aqueous formaldehyde solution and left to react or pre-crosslink at 50-48° C. for several hours to obtain a gelatinous mass wherein no further free aldehyde can be detected. Such gel films may be placed on the wound as such, but they are preferably processed to a laminated product with one or more carrier materials and used in this form. The carrier layers are laminated into or onto the pre-crosslinked gel layer and may be further cross-linked to bond more firmly with the gel.
U.S. Pat. No. 4,554,317 discloses a synthetic hydrophilic membrane prepared by graft polymerization of hydrophilic monomers with a polyurethane substrate. This membrane is particularly useful as a wound covering material. In one embodiment of this invention, the graft polymerization is initiated by X-ray or gamma radiation or an initiator such as a cerium salt.
EPO Publication No. 0 107 376 A1 discloses a tacky, non-rigid transparent and absorbent dressing comprising a layer of cross-linked polyvinylpyrrolidone gel containing from about 75-85% water. The dressing may be prepared by dissolving between 15% and 25% by weight of polyvinylpyrrolidone in water and cross-linking the polyvinylpyrrolidone by means of ionizing radiation.
U.S. Pat. No. 4,567,006 discloses a moisture vapor permeable, adhesive surgical dressing comprising a continuous film of a hydrophilic polymer. Such a dressing is suitable for use on moist wounds because it allows water to evaporate rapidly from the wound area in the presence of an excess of exudate but, as the amount of exudate diminishes, so does the rate of evaporation. The resulting amount of exudate is enough to keep the wound moist without causing blistering of the dressing.
U.S. Pat. No. 4,798,201 discloses a surgical dressing consisting essentially of a film which carries an adhesive layer for securing the dressing to the body. This dressing is also suitable for use on exuding wounds.
U.S. Pat. No. 4,407,846 discloses a method of producing a hydrophilic membrane from a polyethylene base film by first irradiating the film of thickness not more than 150 &mgr;m with ionizing radiation in air or an oxygen atmosphere. Then, without additional radiation, acrylic acid and/or methacrylic acid present in the form of an aqueous solution is grafted onto the irradiated film.
U.S. Pat. No. 3,669,103 discloses a flexible support adapted to be caused to conform to a surface of a body, wherein the support confines a dry, solid, water-swellable, water-insoluble polymeric sorbent to absorb aqueous fluid elaborated by the body to which the support is applied. The polymer sorbent is a lightly cross-linked polymer.
U.S. Pat. No. 4,192,727 discloses a polyelectrolyte hydrogel and method for preparing the same. The polyelectrolyte hydrogel is formed by exposing an acrylate salt and acrylamide to a controlled intensity and dose of ionizing radiation to effect simultaneous cross-linking and polymerization thereof. The resulting hydrogel is an insoluble hydrophilic copolymer which can contain or absorb aqueous fluid.
U.S. Pat. No. 4,646,730 discloses a color stabilized sulfadiazine hydrogel dressing comprising a non-rigid layer of cross-linked polyvinylpyrrolidone gel having incorporated therein at least 0.1% by weight of silver sulfadiazine, which gel has been exposed to electron beam radiation and which gel also contains a color stabilizing amount of magnesium trisilicate.
U.S. Pat. No. 4,750,482 discloses a wound or burn dressing comprising a web-like substrate coated with a layer of crosslinked, water-insoluble, hydrophilic, elastomeric, pressure-sensitive adhesive gel of a gel-forming, water-soluble polymer derived from repeating units, predominantly of vinylpyrrolidone, polyethylene glycol wherein the cross-linked gel is formed by radiation cross-linking of a solution or dispersion of the polymer in the plasticizer and water. The gel retains the plasticizer within a cross-linked three-dimensional matrix of the polymer.
EPO Publication number 0 304 536 A2 discloses an occlusive wound dressing comprising an adhesive layer, a fabric layer bonded to the adhesive layer, a hydrophilic absorbent polymeric layer applied to the fabric layer, and at least one occlusive backing layer. The hydrophilic absorbent polymeric layer of this dressing is applied by pouring a monomer solution onto the fabric layer and thereafter curing to yield the polymeric layer.
Japanese Patent Application No. 57-7414 issued in the name of Saburo Otsuka and assigned to Nitto Electric Ind. KK, discloses a medicinal plaster formed by spraying or spreading a solution or dispersion containing a monomer, a medicine, a releasing aid for medicine, etc., on the surface of a tacky layer formed on a support, and then irradiating it with UV or ionizing radiation.
U.S. Pat. No. 4,871,490 discloses a method of manufacturing hydrogel dressing from synthetic and natural polymers by radiation cross-linking. The method involves an aqueous solution comprising 2-10% by weight polyvinyl
Ghali Isis
Johnson & Johnson Consumer Companies Inc.
Page Thurman K.
LandOfFree
Hydrogel laminate, bandages and composites and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrogel laminate, bandages and composites and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrogel laminate, bandages and composites and methods for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2468800