Hydrodynamic torque converter

192 clutches and power-stop control – Vortex-flow drive and clutch – Including drive-lockup clutch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S070200, C192S003290

Reexamination Certificate

active

06634474

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a hydrodynamic torque converter with a converter housing, a turbine wheel arranged in the converter housing that is rotatable with respect to the converter housing about a rotational axis, and a lockup clutch via which a torque transmission connection is producible between the converter housing and the turbine wheel, wherein the lockup clutch has a first friction surface arrangement which is held by a first friction surface carrier arrangement with respect to the converter housing so as to be substantially fixed with respect to rotation relative to it, a second friction surface arrangement which is held by a second friction surface carrier arrangement with respect to the turbine wheel so as to be substantially fixed with respect to rotation relative to it, a contact pressing arrangement operative for pressing the first and the second friction surface arrangement against one another in frictional contact, and an abutment arrangement at which the first and second friction surface arrangement can be supported substantially in the direction of the axis of rotation when acted upon by the contact pressure arrangement and which optionally forms at least one part of one of the friction surface arrangements.
2. Description of the Related Art
A prior art hydrodynamic torque converter with a lockup clutch having a first friction surface arrangement, a second friction surface arrangement, a contact pressing arrangement and an abutment arrangement is disclosed in German reference DE 197 24 973 C1. A lockup clutch of this torque converter comprises an outer plate set (first friction surface arrangement) and an inner plate set (second friction surface arrangement). The outer plate set is joined, via an outer plate carrier, to the converter housing so as to be fixed with respect to rotation relative to it, but is held therein so as to be axially displaceable. The outer plate carrier is constructed as a substantially annular structural component part which is welded by one axial end face to an inner surface of the converter housing. A toothing is formed by non-cutting shaping at an inner surface of the outer plate carrier, wherein corresponding teeth or projections at the outer plates and an abutment part engage in this toothing to provide a rotational coupling.
A problem arising in torque converters of the type mentioned above is that the welding process for connecting the outer and inner plate carriers requires carrying out subsequent machining procedures, e.g., reworking in the area of the weld. Another problem is that the design of the torque converter must allow fluid to pass through the lockup clutch even when a torque transmission connection is produced via the lockup clutch. Accordingly, openings must be introduced in the outer circumferential area of the outer plate carrier in this known torque converter which constitutes an additional work step which is difficult to carry out.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a hydrodynamic torque converter in which ensures that fluid is allowed to pass through the lockup clutch and that is simple to assemble.
According to the invention, the object is met by a hydrodynamic torque converter with a converter housing, a turbine wheel which is arranged in the converter housing and is rotatable with respect to this converter housing about a rotational axis, and a lockup clutch for producing a torque transmission connection between the converter housing and the turbine wheel, wherein the lockup clutch comprises a first friction surface arrangement which is held by a first friction surface carrier arrangement with respect to the converter housing so as to be substantially fixed with respect to rotation relative to it, a second friction surface arrangement which is held by a second friction surface carrier arrangement with respect to the turbine wheel so as to be substantially fixed with respect to rotation relative to it, a contact pressing arrangement for pressing the first and the second friction surface arrangements against one another in frictional contact, and an abutment arrangement at which the first and second friction surface arrangement are supported substantially in the direction of the axis of rotation when acted upon by the contact pressure arrangement and which optionally forms at least one part of one of the first and second friction surface arrangements.
It is further provided that the first friction surface carrier arrangement has a substantially annular body region connected with the converter housing or with a component connected with the converter housing. Driver projections are arranged at a distance from one another in the circumferential direction proceeding from the body region, wherein respective counter-driver projections at the first friction surface arrangement engage between these driver projections.
According to the present invention, the outer plate carrier, i.e., the first friction surface carrier arrangement, is not constructed as an axially continuous annular part. Rather the annular area of the annular body is limited to a certain length and driver projections proceed from this length, wherein gaps are formed between the driver projections. The fluid flowing into the interior of the converter is allowed to pass through these gaps. Furthermore, this through-flow is substantially not dependent on whether or not the lockup clutch is engaged. Accordingly, a suitable flow around the friction surface arrangements is ensured in every case, so that increased performance is achieved particularly when the lockup clutch slips.
The driver projections preferably extend approximately axially. Centering is achieved in the area of the lockup clutch in a particularly simple and accurate manner when an outer surface of the annular body region contacts an inner surface of the converter housing and/or a component connected therewith and the outer surface of the annular body region is connected with the converter housing and/or with the component connected therewith in the region of these surfaces.
For the axial support of the respective friction surface arrangements, the abutment arrangement, i.e., an abutment ring, may be supported at the driver projections in an end area of the driver projections remote of the annular body region.
Alternatively, the abutment arrangement may comprise a substantially annular abutment part with a radial outer region of the abutment arrangement secured to the converter housing and/or the component connected therewith. The radial inner side of the abutment arrangement forms an abutment area for the first and second friction surface arrangement. Accordingly, the abutment arrangement and the friction surface carrier arrangement are structural component parts that are separate from one another in this embodiment. This arrangement simplifies the construction of the individual structural component parts in themselves. In particular, the desired fluid passage may be maintained by introducing holes in the abutment arrangement.
The abutment ring may be connected with a substantially radially extending area of the converter housing and/or a component connected therewith to join the abutment ring to the converter.
The first friction surface carrier arrangement may assume a dual function. For example, the first friction surface carrier arrangement may form a radial supporting surface in the annular body region and/or an axial guide surface for the contact pressure arrangement.
In an alternative embodiment of the present invention, the object of the present invention is met in that the first friction surface carrier arrangement has an annular body region which forms the abutment arrangement and at which a connection area is provided in a radial outer region for connecting with the converter housing and/or with the component connected therewith.
In this case, the connection area may comprise a radial outer portion of the annular body region. A plurality of driver openings are formed in a su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrodynamic torque converter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrodynamic torque converter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrodynamic torque converter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3152677

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.