Hydrocarbon fired thermophotovoltaic electric generator...

Batteries: thermoelectric and photoelectric – Photoelectric – Cells

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06486392

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to thermophotovoltaic (TPV) power generators for converting fuel to electricity using a minimum number of moving parts.
High efficiency conversion of fuel energy into electrical energy using TPV cells requires burner configurations designed specifically for TPV generation. Those designs incorporate heat exchangers, cell receiver cooling systems, infrared filters, mirrors and windows for spectral control, and special high temperature ceramic emitters. Existing units for TPV generation include high efficiency stand-alone TPV generators and appliances having configurations specifically matched to the TPV generator designs. Those units are too restrictive for immediate practical appliance retrofit applications. In typical high efficiency designs, a regenerator is required to preheat the combustion air (recovering heat from the exhaust) and to boost flame temperatures. That requirement complicates the fuel/air mixing and mandates higher pressures for the combustion gases. To obtain higher efficiencies, the TPV cell cooling system must be closely coupled to the burner/emitter/receiver combination. To meet that requirement, appliances must be inherently modified, leading to complicated designs of appliances such that existing appliances cannot be used directly. Needs exist for practical TPV power generating units that are compatible for use with existing appliances.
Existing appliance burner designs are inappropriate for adapting directly to TPV generation even at lower efficiencies. Existing appliances operate at much lower temperatures, with radiative emissions kept low to simplify burner material selection. To retrofit appliances for TPV, the entire burner unit must be replaced by new units specifically designed to attain the required high temperatures. Needs exist for universal TPV generator inserts for use in appliances which do not require modification of the appliances nor complex, complicated designs.
SUMMARY OF THE INVENTION
The present invention is a TPV generator insert for retrofitting appliances. The original burners of existing appliances are replaced by the present TPV generator inserts, thus upgrading the appliances into either cogeneration or self-powered units. Examples of appliances which may be retrofitted using the present invention include all appliances requiring hydrocarbon burner assemblies, such as residential, industrial, or commercial equipment. Those appliances include but are not limited to forced air and hydronic space heaters, water heaters, (ammonia) absorption cycle coolers, refrigerators and air conditioning systems. Immediate applications for the present invention range from simple units with several watts of electric output for ignition and controls to several hundred watt self-powered appliances requiring electrical power for fans or pumps. Self-powered units requiring at minimum a small battery for electric storage may be used for automatic controls during times when there is no TPV output. Cogeneration units are typically tied into a system including a battery storage bank, charge controller, or the like, and draw power from the system to operate their automatic controls.
Hydrocarbon fired appliances are prevalent throughout our society. In many cases those appliances are capable of generating commercially attractive electrical power outputs or sufficient electric power to render an appliance independent from frequent and unpredictable electric power outages. A hydrocarbon fired appliance retrofitted with the present TPV burner insert not only provides the appliance's primary function, such as water heating, space heating or cooling, but also provides surplus electrical power generation as a cogenerator or independent electrical power generation as a self-powered appliance.
The present TPV burner insert is capable of retrofitting any existing hydrocarbon burner-based appliance. High electrical efficiency is not a concern, as fuel to electric conversion efficiency is less important for appliances to be converted into cogeneration or self-powered units. That lack of importance results from the higher grade “waste” heat, which is the primary heat source for the appliance's operation. The total efficiency (combined electric and appliance output) is more important from a practical standpoint. By making the TPV cell cooling integral to the standard burner insert, near independence from existing appliance designs is achieved. The standard design of the present TPV burner insert is independent of the appliance to be retrofitted other than the general shape and size. Those dimensions are modified as appropriate. In the present insert, only adapters must be specific to any particular appliance. Those adapters generally include simple sheet metal and plates to mount the insert at an appropriate location in the appliance.
The present invention uses a simple, low efficiency burner in contrast to potentially higher efficiency, but more complex burners with regeneration. The maximum theoretical emitter temperatures attainable using the present insert are lower than with a regenerator, as no heat escaping in the exhaust is recaptured. The present invention avoids the high pressure requirements and problems associated with incomplete mixing. Longer burn times which tend to produce higher yields of NO
x
are also avoided. The high grade exhaust heat is routed and used by the appliance including the present insert.
The present burner thoroughly premixes near stoichiometric air with the fuel, maintains the mix at low temperatures to prevent preignition, and then rapidly burns the mix with high intensity just prior to forcing the ignited mix through the porous ceramic emitter. The fuel/air ratio is adjusted empirically to attain the highest temperature from the emitter, typically ranging between 1300-1500° C.
The burner for the present TPV retrofit insert is based on the “perfectly stirred reactor” combustion design theory. In a simplest embodiment the burner includes a premix tube into which the fuel and air are injected at high velocities. That mixture proceeds into an expansion chamber where the mixing is completed as the gases slow down and equilibrate in pressure to give a highly flammable but cold mix. A small channel connects the expansion chamber to an insulated combustion chamber. The gases flow at high velocities from the expansion chamber to the insulated combustion chamber to prevent flashback. The gas combustion, once initiated in the combustion chamber, is very rapid and intense with short duration, briefly yielding extremely high temperatures before being forced to cool as the gas passes through the thin porous ceramic emitter and out the exhaust channel. Secondary combustion occurs beyond the insert in the appliance where adequate excess air is supplied to burn any unburned gases. The high temperature but very short duration burn of the present invention minimizes NO
x
generation. Since the gases are completely premixed, a uniform emitter temperature results. The entire combustion chamber is fabricated from vacuum formed high temperature alumina “foam” insulation with very low thermal conductivity, low absorptivity and emissivity, and high diffuse reflectivity. The porous ceramic emitters may be fabricated from numerous types of high temperature materials. The radiation from the emitter is directed by the combustion chamber's shape towards TPV cell receivers through a transparent high temperature quartz or sapphire heat shield or window. The radiation is further directed by infrared optical confinement mirrors and spectrally controlled by optical filters which transmit the useful portions of the radiation to the cells of the receiver and reflect the longer wavelength portion back towards the emitter. For practical applications the TPV cells of the present invention are preferably low bandgap photovoltaic cells which respond at least out to a wavelength of 1.7 micrometers.
There are three general embodiments of the present TPV retrofit burner insert assembly: a two-sided linea

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrocarbon fired thermophotovoltaic electric generator... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrocarbon fired thermophotovoltaic electric generator..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrocarbon fired thermophotovoltaic electric generator... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944314

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.