Mineral oils: processes and products – Chemical conversion of hydrocarbons
Reexamination Certificate
2000-11-30
2003-04-01
Norton, Nadine G. (Department: 1764)
Mineral oils: processes and products
Chemical conversion of hydrocarbons
C208S111010, C208S058000, C208S137000, C208S134000, C208S120010, C585S671000, C585S739000, C585S446000, C585S475000, C585S469000, C585S639000
Reexamination Certificate
active
06540903
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to new crystalline zeolite SSZ-47, a method for preparing SSZ-47 using a selected group of bicyclo ammonium cation templating agents, and processes employing SSZ-47 as a catalyst.
2. State of the Art
Because of their unique sieving characteristics, as well as their catalytic properties, crystalline molecular sieves and zeolites are especially useful in applications such as hydrocarbon conversion, gas drying and separation. Although many different crystalline molecular sieves have been disclosed, there is a continuing need for new zeolites with desirable properties for gas separation and drying, hydrocarbon and chemical conversions, and other applications. New zeolites may contain novel internal pore architectures, providing enhanced selectivities in these processes.
Crystalline aluminosilicates are usually prepared from aqueous reaction mixtures containing alkali or alkaline earth metal oxides, silica, and alumina. Crystalline borosilicates are usually prepared under similar reaction conditions except that boron is used in place of aluminum. By varying the synthesis conditions and the composition of the reaction mixture, different zeolites can often be formed.
SUMMARY OF THE INVENTION
The present invention is directed to a family of crystalline molecular sieves with unique properties, referred to herein as “zeolite SSZ-47” or simply “SSZ-47”. Preferably, SSZ-47 is obtained in its silicate, aluminosilicate, titanosilicate, vanadosilicate or borosilicate form. The term “silicate” refers to a zeolite having a high mole ratio of silicon oxide relative to aluminum oxide, preferably a mole ratio greater than 100. As used herein, the term “aluminosilicate” refers to a zeolite containing both alumina and silica and the term “borosilicate” refers to a zeolite containing oxides of both boron and silicon.
In accordance with this invention, there is also provided a zeolite having a mole ratio greater than about 20 of an oxide of a first tetravalent element to an oxide of a second tetravalent element different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof and having, after calcination, the X-ray diffraction lines of Table II.
Further, in accordance with this invention, there is provided a zeolite having a mole ratio greater than about 20 of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof and having, after calcination, the X-ray diffraction lines of Table II below.
The present invention further provides such a zeolite having a composition, as synthesized and in the anhydrous state, in terms of mole ratios as follows:
YO
2
/W
c
O
d
>20
M
2
/YO
2
0.01-0.03
Q/YO
2
0.02-0.05
wherein Y is silicon, germanium or a mixture thereof; W is aluminum, gallium, iron, boron, titanium, indium, vanadium or mixtures thereof; c is 1 or 2; d is 2 when c is 1 (i.e., W is tetravalent) or d is 3 or 5 when c is 2 (i.e., d is 3 when W is trivalent or 5 when W is pentavalent); M is an alkali metal cation, alkaline earth metal cation or mixtures thereof; n is the valence of M (i.e., 1 or 2); and Q is at least one bicyclo ammonium cation.
In accordance with this invention, there is also provided a zeolite prepared by thermally treating a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, boron oxide, titanium oxide, indium oxide, vanadium oxide and mixtures thereof greater than about 20 at a temperature of from about 200° C. to about 800° C., the thus-prepared zeolite having the X-ray diffraction lines of Table II. The present invention also includes this thus-prepared zeolite which is predominantly in the hydrogen form, which hydrogen form is prepared by ion exchanging with an acid or with a solution of an ammonium salt followed by a second calcination.
Also provided in accordance with the present invention is a method of preparing a crystalline material comprising an oxide of a first tetravalent element and an oxide of a second tetravalent element which is different from said first tetravalent element, trivalent element, pentavalent element or mixture thereof, said method comprising contacting under crystallization conditions sources of said oxides and a templating agent comprising a bicyclo ammonium cation.
The present invention additionally provides a process for converting hydrocarbons comprising contacting a hydrocarbonaceous feed at hydrocarbon converting conditions with a catalyst comprising the zeolite of this invention. The zeolite may be predominantly in the hydrogen form. It may also be substantially free of acidity.
Further provided by the present invention is a hydrocracking process comprising contacting a hydrocarbon feedstock under hydrocracking conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
This invention also includes a dewaxing process comprising contacting a hydrocarbon feedstock under dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
The present invention also includes a process for improving the viscosity index of a dewaxed product of waxy hydrocarbon feeds comprising contacting the waxy hydrocarbon feed under isomerization dewaxing conditions with a catalyst comprising the zeolite of this invention, preferably predominantly in the hydrogen form.
The present invention further includes a process for producing a C
20+
lube oil from a C
20+
olefin feed comprising isomerizing said olefin feed under isomerization conditions over a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.
In accordance with this invention, there is also provided a process for catalytically dewaxing a hydrocarbon oil feedstock boiling above about 350° F. and containing straight chain and slightly branched chain hydrocarbons comprising contacting said hydrocarbon oil feedstock in the presence of added hydrogen gas at a hydrogen pressure of about 15-3000 psi with a catalyst comprising at least one Group VIII metal and the zeolite of this invention, preferably predominantly in the hydrogen form. The catalyst may be a layered catalyst comprising a first layer comprising at least one Group VIII metal and the zeolite of this invention, and a second layer comprising an aluminosilicate zeolite which is more shape selective than the zeolite of said first layer.
Also included in the present invention is a process for preparing a lubricating oil which comprises hydrocracking in a hydrocracking zone a hydrocarbonaceous feedstock to obtain an effluent comprising a hydrocracked oil, and catalytically dewaxing said effluent comprising hydrocracked oil at a temperature of at least about 400° F. and at a pressure of from about 15 psig to about 3000 psig in the presence of added hydrogen gas with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The zeolite may be predominantly in the hydrogen form.
Further included in this invention is a process for isomerization dewaxing a raffinate comprising contacting said raffinate in the presence of added hydrogen with a catalyst comprising at least one Group VIII metal and the zeolite of this invention. The raffinate may be bright stock, and the zeolite may be predominantly in the hydrogen form.
Also included in this invention is a process for increasing the octane of a hydrocarbon feedstock to produce a product having an increased aromatics content comprising contacting a hydrocarbonaceous feedstock which comprises normal and slightly branched hydrocarbons having a boiling range above about 40° C. and less than about 200° C., under aromatic conversion conditions with a catalyst comprising the z
Lee Gregory S.
Nakagawa Yumi
Zones Stacey I.
Chevron U.S.A. Inc.
Norton Nadine G.
Sheridan Richard J.
LandOfFree
Hydrocarbon conversion with zeolite SSZ-47 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydrocarbon conversion with zeolite SSZ-47, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrocarbon conversion with zeolite SSZ-47 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3060410