Hydrocarbon class separation and quantitation by split...

Liquid purification or separation – With means to add treating material – Chromatography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S656000, C210S659000, C422S070000

Reexamination Certificate

active

06183635

ABSTRACT:

The present invention relates to analytical chemistry, and in particular, the present invention provides methods and apparatus for separating and quantifying classes of hydrocarbons in a sample.
BACKGROUND OF THE INVENTION
A number of chromatographic techniques are known for separating the components of a sample. In packed column chromatography, a mobile phase fluid and a sample flow through a column containing a stationary phase, which is chosen to retain specific components of the sample. Supercritical fluid chromatography (SFC) uses a supercritical fluid, usually carbon dioxide, as the mobile phase. The solvent power of the mobile phase in supercritical fluid chromatography is a linear function of density, which is in turn related to pressure. However, in systems such as SFC systems that use compressible fluids at pressures above atmospheric (ambient), the pressure of the system is coupled to the mass flow rate.
The problems caused by the coupling between pressure and mass flow rate in supercritical fluid systems and their solution are explained in detail in commonly-assigned U.S. Pat. Nos. 5,133,859; 5,094,741 and U.S. patent application Ser. No. 804,155 filed Dec. 6, 1991—Frank et al., which are all incorporated herein by reference. Frank et al. teach that mass flow rate and pressure can be “decoupled” and independently controlled by providing a variable orifice restrictor downstream from, e.g., the column of a chromatographic instrument or the extraction chamber of an-extraction instrument. Variable orifice restrictors and their use are disclosed in commonlyassigned U.S. Pat. Nos. 5,009,778; 5,151,178 and 5,178,767—Nickerson et al. which are all incorporated herein by reference. As used herein, “variable restrictors” refer to variable orifice restrictors such as those disclosed in the Frank and Nickerson patents, as well as other types of restrictors in which the degree of restriction is changed by varying the size of an orifice, occluding an orifice, changing other physical characteristics of an orifice or interchanging and selecting fixed orifices of varying sizes within a valve or similar device.
A specific application of supercritical fluid chromatography is the analysis of the aromatic content of diesel fuels using packed columns and a flame ionization detector (FID). The test method is set forth in ASTM D5186-91, published by the American Society for Testing and Materials, 1916 Race Street, Philadelphia, Pa. (USA) 19103-1187, which is incorporated herein by reference. The above-referenced ASTM method is generally applicable to many different types of petroleum and chemical samples where the goal is to determine the relative amounts of different classes of hydrocarbons. Basically, saturated hydrocarbons are separated from aromatic hydrocarbons in an SFC column and the flame ionization detector provides a signal based on the mass of carbon in each class of hydrocarbon.
The ASTM method specifies a fixed restrictor at the end of the SFC column to maintain the necessary pressure for supercritical fluid chromatography. However, there are several disadvantages to this configuration. First, fixed restrictors clog, changing retention time and the response of the flame ionization detector. Also, since every restrictor is different, no two sets of analysis equipment will have equivalent retention times, thereby introducing an uncertainty into the test method. Additionally, as explained above, in a fixed restrictor system, flow rate through the column is directly related to the pressure and the restrictor, so optimization and maintenance of chromatographic conditions is very difficult.
Another problem with the ASTM method is that the response of flame ionization detectors becomes nonlinear and non-uniform for the different classes of hydrocarbons as the flow the supercritical fluid mobile phase becomes too large. This limits the size of columns that can be used. Typically, the larger the column size, the larger the flow to the flame ionization detectors. Thus, in this type of system, smaller columns are less problematic than larger columns. It would be desirable to be able to control the flow rate to permit the use of columns having a larger inner diameter than typical SFC columns.
Finally, even though the flame ionization detector provides a signal representing the mass of the carbon atoms in the molecule, some diesel fuels with relatively the same amount of aromatic compounds perform quite differently in engines. Therefore, the flame ionization detector signal alone is not sufficient to differentiate all the diesel fuels being tested. Accordingly, it would be further desirable to provide a system wherein additional analytical techniques or instruments can be incorporated to simultaneously analyze the effluent stream from the SFC column to more accurately characterize the sample.
SUMMARY OF THE INVENTION
It has now been found, however, that the shortcomings of the prior art methods of separating and classifying the relative amounts of two or more classes of hydrocarbon molecules in a sample can be overcome. The present invention discloses methods wherein an input stream comprising a mobile phase, preferably a supercritical fluid, and the sample is injected into a chromatographic column at predetermined conditions of pressure and flow rate, and an effluent stream exiting the chromatographic column is split into a first effluent stream and a second effluent stream. Preferably, first effluent stream has a substantially smaller mass flow rate than the second effluent stream, and most preferably, comprises less than 5% of the input stream. By determining the mass of carbon in each of the classes of hydrocarbons in the first effluent stream, preferably using a flame ionization detector, and directing the second effluent stream through a variable restrictor, the pressure and mass flow rate of the input stream can be independently controlled while improved results are obtained. In a preferred embodiment the method includes the further step of identifying the hydrocarbon molecules in the second effluent stream in order to verify the analysis or provide additional data. Preferably, the second effluent stream is directed into a detector, such as an ultraviolet detector, for this purpose. In a most preferred embodiment, the methods of the present invention are used with a sample comprised of diesel fuel, and the classes of hydrocarbons comprise saturated and aromatic hydrocarbons.
The present invention also discloses preferred embodiments of apparatus for separating and classifying the relative amounts of two or more classes of hydrocarbon molecules in a sample in accordance with the above-described methods. Preferably, a chromatograph for producing an effluent stream, a detector receiving a first portion of the effluent stream, and a variable orifice restrictor receiving a second portion of the effluent stream are provided. The variable restrictor permits the independent control the pressure and flow rate of the input stream. The chromatograph is most preferably a supercritical fluid chromatograph that includes a column packed with an adsorbent such as silica; the column most preferably has an internal diameter of between 1 to 5 millimeters (mm). In certain embodiments, an apparatus for identifying the hydrocarbon molecules in the second effluent stream, such as a multi-wavelength ultraviolet detector is also included.
The variable orifice restrictors used in the present invention may be of any of a number of different types. For example, the restrictor may comprise an axially moveable pin to restrict mass flow by varying the size of an orifice. Mass flow rate may also be varied by selecting an orifice plate comprising a fixed orifice and inserting the orifice plate into a variable restrictor device.


REFERENCES:
patent: 3458437 (1969-07-01), Ouano
patent: 3496763 (1970-02-01), Broerman
patent: 3686117 (1972-08-01), Lauer
patent: 3725232 (1973-04-01), Pretorius
patent: 3935097 (1976-01-01), Roof
patent: 4016074 (1977-04-01), Porter
patent: 4137161 (1979-01-01), Shimada
patent: 4204952

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrocarbon class separation and quantitation by split... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrocarbon class separation and quantitation by split..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrocarbon class separation and quantitation by split... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597316

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.