Hydraulic valve-operating mechanism

Internal-combustion engines – Poppet valve operating mechanism – Hydraulic system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S090160, C123S090170, C123S090220, C123S090260, C123S090270, C123S090310, C123S090600

Reexamination Certificate

active

06595170

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a mechanism for operating one or more valves of a piston device, in particular an intake valve and/or an exhaust valve of an internal-combustion engine.
BACKGROUND OF THE INVENTION
A valve-operating mechanism is known from FR 2 480 854. This known mechanism comprises a first plunger and a second plunger, each plunjer being operated by a corresponding cam. These cam operated plungers and the piston for actuating the valve delimit a common chamber which is filled with hydraulic fluid. The common chamber of the known mechanism is provided with a check valve controlled opening. Via this opening hydraulic fluid can be supplied to the common chamber to compensate for play in the valve-operating mechanism.
The invention relates in particular to a mechanism which makes it possible to make opening and closing the valve(s) variable to a considerable extent, in a particular embodiment as a function of the demand for torque in an internal-combustion engine.
OBJECT OF THE INVENTION
The object of the invention, in a particular embodiment, is to provide a valve-operating mechanism which makes it possible to operate an internal-combustion engine using the so-called Miller cycle. At the end of the 1940s, Miller proposed that an internal-combustion engine working on the spark-ignition principle be provided with a system in which, without using a so-called compound cylinder, the compression ratio and expansion ratio are significantly different from one another. Miller achieved this by providing the intake valve of a 4-stroke engine with a very large after-closure.
One drawback of the Miller cycle is that the specific output of the engine falls considerably if the engine has fixed opening times for the intake and exhaust valves. The invention aims to make it possible on the one hand to fully utilise the advantages of the Miller cycle under partial load yet, when full power is required, to completely or partially switch off the Miller cycle.
SUMMARY OF THE INVENTION
The present invention provides a mechanism for operating a valve of a piston device, in particular an intake or exhaust valve of an internal-combustion engine, which valve can move between an open position and a closed position and is provided with associated restoring means for returning the valve to the closed position.
The mechanism comprises:
a hydraulic valve actuator for operating the valve of the piston device, which valve actuator has a variable chamber which is delimited by a piston which can be coupled to the valve, in such a manner that when hydraulic fluid is supplied to the said chamber the valve opens,
a rotatable first cam with a first cam profile,
a rotatable second cam with a second cam profile,
the first cam profile and the second cam profile each comprising
a rising flank, a stationary flank and a falling flank,
a first cam follower which can be operated by the first cam,
a second cam follower which can be operated by the second cam,
the relative angular position of the first cam and the second cam with respect to one another being adjustable,
a pressure actuator in which there is a pressure chamber having a variable volume and having a first and a second plunger, the first cam follower being coupled to the first plunger and the second cam follower being coupled to the second plunger, in such a manner that a plunger is stationary if the associated cam follower is operated by the stationary flank, the first and second plungers each being displaceable between a retracted position and an extended position, in such a manner that the position of the first and second plungers defines the volume of the pressure chamber, the retraction of a plunger leading to a reduction in the volume of the pressure chamber,
the pressure chamber of the pressure actuator being connected to the variable chamber of the valve actuator to form a common chamber,
the common chamber being provided with a common chamber opening which common chamber opening has an associated valve assembly for opening and closing the common chamber opening.
The valve assembly associated with the common chamber opening is adapted to open said common chamber opening if the first plunger moves to the extended position or if the second plunger moves to the retracted position, so that hydraulic fluid can flow out of the common chamber.
If the common chamber opening is open the hydraulic pressure in the common chamber is insufficient to open or hold open the valve operated by the hydraulic valve actuator.
The mechanism is designed in such a manner that, at the moment at which the first plunger begins to move out of the extended position into the retracted position, the second plunger is in its retracted position or has almost reached its retracted position, in such a manner that the valve which is operated by the valve actuator opens as a result of the retracting movement of the first plunger.
The adjustability of the angular position of the cams with respect to one another allows virtual cam profiles which differ within a wide range to be obtained. For example, the present mechanism makes it possible, in a 2-stroke internal-combustion engine, to set the valve angle of the intake valve in a continuously variable manner between approximately 100 and 180 degrees while retaining the maximum valve lift. In a 4-stroke engine, the valve angle of the inlet valve can be set between 180 and 360 degrees. In many known mechanisms, there is a relationship between the valve angle and the valve lift, the valve lift generally increasing when the valve angle increases. A relationship between valve angle and valve lift of this type represents a disadvantage.
In the mechanism according to the invention, the first and second cam profiles may be different.
In a piston device with a crankshaft, the angle between the cams may be adjusted, for example, as a result of one of the cams having an angular position which can be adjusted with respect to the crankshaft. It is also possible for both cams to be adjustable independently of one another in terms of their angular position with respect to the crankshaft.
The mechanism according to the invention is particularly advantageous for operating the intake valve of a 4-stroke internal-combustion engine, in particular because the after-closure of the intake valve can be varied easily, so that the traction characteristic of the engine can be optimized. To make this possible, it is advantageous if the angular position of the second cam with respect to the crankshaft of the engine can be adjusted within a considerable range. As a result, it is possible to set a large after-closure at a high engine speed and a smaller after-closure at a low speed. The time at which the intake valve opens can then be varied by also making the angular position of the first cam, variably adjustable within a smaller range.
In 2-stroke internal-combustion engines provided with uniflow scavenging with an exhaust controlled by valves, the mechanism according to the invention also has advantages. Firstly, the pre-exhaust with respect to the point at which the scavenging ports open can now be selected as a function of load and/or speed, since fewer crank degrees are required for pressure equalization at a low speed, but also a lower scavenging factor may be sufficient under a low load, so that the exhaust valves can close earlier, and so that, in 2-stroke engines with pressure charging, the exhaust temperature remains higher, which is advantageous in order to keep the engine operating without an emergency scavenging pump.
In an embodiment which is advantageous in practice, each cam follower is integral with the associated plunger, but in a variant, it is also possible to provide a suitable transmission mechanism between a cam follower and the associated plunger.
The present invention provides for the opening and closing of the valve of the piston device to be completely determined by a hydrostatic process. In this case, the question of whether the opening of the common chamber is open or closed is the determining factor for whether th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydraulic valve-operating mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydraulic valve-operating mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydraulic valve-operating mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3015830

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.