Hydraulic steering system

Power plants – Pressure fluid source and motor – Expansible chamber type volumetric responsive measuring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S385000

Reexamination Certificate

active

06804956

ABSTRACT:

BACKGROUND OF THE INVENTION
Existing hydraulic steering systems with a supply connection arrangement, have a high-pressure connection and a low-pressure connection, with a working connection arrangement, a directional valve and a metering pump unit being arranged between the supply connection arrangement and the working connection arrangement; a metering pump arrangement having at least two hydraulically parallel-connected and mechanically parallel-operated metering pumps with a shut-off valve in a hydraulic connection between the two metering pumps; with the shut-off valve having a return spring and a control inlet that is connected with the high-pressure connection.
A hydraulic steering system of this kind is disclosed in DE 195 11 501 A1.
A steering system of this kind is preferably used for the steering of vehicles. Both the metering pumps and the directional valve are connected with a steering handwheel or a similar device. When the steering handwheel is turned, the directional valve is displaced in the desired direction, and the metering pump arrangement supplies hydraulic fluid until a steering motor connected to the working connections of the working connection arrangement has reached the desired position. During normal, undisturbed operation, as long as hydraulic fluid with a sufficient pressure is available at the high-pressure connection, both metering pumps are active. They can supply a correspondingly large volume of hydraulic fluid, which enables a fast reaction of the steering motor to movements of the steering handwheel.
When the pressure at the high-pressure connection drops, for example because of a defect in the hydraulic supply, the hydraulic steering can no longer be operated through support from this hydraulic pressure. In this so-called “emergency operation” the metering pumps are also used as auxiliary pumps, that is, the metering pumps are used for producing the pressure of the hydraulic fluid. However, for this purpose, the required energy must be provided via the steering handwheel, that is, by human muscular strength. Therefore, by means of the shut-off valve, the connection between the two metering pumps is interrupted. One of the metering pumps will be short-circuited, and the operator now only has to activate the other metering pump. To achieve the same deflection of the steering motor, the operator will have to turn the steering handwheel.
In the known hydraulic steering system, the shut-off valve between two metering pumps is acted upon by pressure from the high-pressure line and in the other direction by the force of the return spring and the pressure in the low-pressure line. However, to an increasing extent, additional consumers (or “loads”) are connected to the low-pressure line, which can work with a lower pressure. This measure serves the purpose of saving energy. When the steering is not activated, that is, the hydraulic steering system is not active; the hydraulic fluid simply flows through the steering system. Via a usually available load-sensing system (LS-system) the supply pressure is correspondingly reduced, so that in the low-pressure line, also called tank line, merely a lower pressure of, for example, 15 to 25 bars is effective, with which a coupling or a brake can be activated. When the steering system is activated, however, a higher supply pressure is available. A large share of this pressure is, however, “consumed” in the steering system, so that a correspondingly reduced pressure is again ruling in the tank line.
It is, however, a condition for using the low-pressure or tank line for supplying a low-pressure hydraulic that the first steering inlet of the shut-off valve is acted upon by a correspondingly higher pressure. This pressure is produced in that a prestressed non-return valve is arranged after the branch of a steering pressure line to the first steering inlet of the shut-off valve. This non-return valve ensures that a differential pressure of 8 to 10 bars exists over the shut-off valve, that is, the pressure on the side of the first steering inlet is by 8 to 10 bars higher than the pressure in the low-pressure line. This partially causes substantial energy consumption, as the hydraulic fluid having a correspondingly high pressure must pass the highly prestressed non-return valve.
It is therefore a principal object of this invention to reduce the energy consumption when using the steering system in connection with a low-pressure connection, which is loaded by consumers.
SUMMARY OF THE INVENTION
The problems of existing hydraulic systems as mentioned above are solved in that the shut-off valve has a second steering inlet, which can be acted upon by a pressure from a lowest-pressure connection.
Thus, next to the low-pressure connection, which is also loaded by consumers, a lowest-pressure connection is used, with which it is ensured that it always carries a relatively low pressure. Usually, this is the tank pressure, the atmospheric pressure or another pressure, also called T
0
. Still, also even lower pressures can rule in many hydraulic systems, as long as it is ensured that no significant forces are acting upon the shut-off valve through the pressure at the lowest-pressure connection. The pressure at the first steering inlet merely has to overcome the force of the return spring. Accordingly, the pressure difference over the shut-off valve can be kept small. Energy losses are substantially reduced.
The pressure at the second steering inlet acts in the same direction as the return spring. Then, when desired, the effect of the return spring can be supported.
Also, a non-return valve prestressed with low opening pressure is arranged in high-pressure line connected with the high-pressure connection, a steering line branching off to the first steering connection in front of said valve. This non-return valve is not required to build up a pressure over the shut-off valve, with which pressure the shut-off valve is switched to one of its two working positions, but serves as a block to prevent retroaction from the steered wheels on the hydraulic system, the so-called “kick-back”. For this reason, a high prestressing is not required either. On the contrary, this non-return valve can be prestressed with such a small force that merely a closed state is ensured, and no larger forces are required to open it. Accordingly, also the pressure drop at such a non-return valve is small. The energy consumption is kept low.
It is particularly preferred that the opening pressure is maximum 1 bar. Compared with the known case, this is relatively little. Usually, an even smaller pressure will be sufficient, for example 0.5 bar. In the known case, this pressure would be in the range around 10 bars.
Preferably, the second steering inlet is connected with a changeover valve, which connects the second steering inlet with either the lowest-pressure connection or the high-pressure connection. Thus, the second steering inlet can additionally be used for a deliberate switching from the use of both metering pumps to the use of one metering pump. Thus, the transmission ratio between the operation of the steering handwheel or a similar manipulator and the steered wheels can be changed. For example, when driving on a public road, it is possible to use only one metering pump, that is, a smaller displacement, so that the deflection of the steered wheels is made safer and less sensitive. When, however, the vehicle is driven offroad, for example on a building site, it may be expedient to use both metering pumps. In this case the same deflection of the steered wheels is achieved already with small deflections of the steering handwheel. Thus, the shut-off valve gets an additional purpose, namely selecting the “transmission ratio” between the steering handwheel and the steered wheels.
It is also preferred that the changeover valve can be remote-controlled. Thus, the changeover valve can be arranged near or even in the steering system, without negative influence on its operational qualities. The changeover valve can, for example, be activated from the area of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydraulic steering system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydraulic steering system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydraulic steering system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3260549

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.