Interrelated power delivery controls – including engine control – Transmission control – Transmission controlled by engine
Reexamination Certificate
2001-05-08
2003-10-21
Lewis, Tisha D. (Department: 3681)
Interrelated power delivery controls, including engine control
Transmission control
Transmission controlled by engine
C477S160000, C477S163000, C477S164000, C477S125000, C475S119000, C475S120000, C475S123000, C701S062000
Reexamination Certificate
active
06634991
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The invention relates to a hydraulic control unit for an automatic transmission.
2. Description of Related Art
Conventional automatic transmissions used in automobiles and other vehicles are equipped with a transmission device provided with a planetary gear unit and other parts. Such a transmission device is provided with a plurality of friction engagement elements including a clutch and a brake and, making each of these friction engagement elements engage or disengage in a predetermined combination causes an output of rotation to be produced selectively from gear elements, such as a sun gear, ring gear, and carrier of the planetary gear unit to achieve a plurality of gearshift positions.
Each of the friction engagement elements is engaged or disengaged by operating a hydraulic servo of a hydraulic circuit. The hydraulic servo is provided with a hydraulic servo drum having an outer peripheral wall and an inner peripheral wall, and an annular piston fitted slidably into the hydraulic servo drum, etc. By supplying oil to, and discharging it from, an application oil chamber formed between the hydraulic servo drum and the annular piston, the annular piston is moved, thereby engaging or disengaging a friction engagement element disposed to be opposed to the annular piston.
Also, solenoid valves and selector valves, etc. of various kinds are disposed in the hydraulic circuit. When the solenoid of a predetermined solenoid valve is turned ON or OFF, a predetermined selector valve is selected and hydraulic pressure is supplied to, or exhausted from, a hydraulic servo connected to the corresponding selector valve.
However, the automatic transmission of such a configuration is designed to cause one or more specific friction engagement elements to be engaged to achieve a certain gearshift position. If, however, a solenoid valve fails and a friction engagement element that should not be engaged is engaged, then interlock occurs in the transmission device.
A hydraulic circuit is therefore provided in which, if a hydraulic pressure is about to be supplied to a hydraulic servo of a friction engagement element which should not be engaged, that hydraulic pressure is used to select a predetermined selector valve, thereby preventing the hydraulic pressure from being supplied to the hydraulic servo and thus preventing interlock from occurring in the transmission device (See Japanese Patent Application Laid-Open Publication SHO 63-210443).
In the conventional automatic transmission, however, interlock can be prevented from occurring in the transmission device in a condition in which a friction engagement element that should not be engaged is engaged, that is, a condition in which a failure has occurred due to hydraulic pressure being supplied to the hydraulic servo. However, in a condition in which a friction engagement element that should be engaged is not engaged, that is, in a condition in which failure has occurred due to hydraulic pressure not being supplied to the hydraulic servo, a neutral condition is established in the transmission device depending on the type of the automatic transmission, and therefore power drive cannot be transmitted via the transmission device. This could result in not only a desired gearshift not being performed properly, but also the vehicle not being able to be moved.
In addition, depending on the solenoid valve that has failed, a gearshift from a high-speed gear position such as 4th speed or 5th speed, to a low-speed gear position such as 1st speed or 2nd speed, is made, thus applying large engine braking and generating gearshift shock.
SUMMARY OF THE INVENTION
To overcome the problems of the conventional automatic transmission, the invention provides a hydraulic control unit for an automatic transmission that can prevent interlock from occurring in the transmission device, prevent a neutral condition from being established in the transmission device, prevent a gearshift from a high-speed gear position to a low-speed gear position from being made, and prevent gearshift shock from being generated.
To achieve the foregoing, a hydraulic control unit for an automatic transmission according to an exemplary aspect of the invention is provided with hydraulic servos, each of which engages and disengages respective friction engagement elements, hydraulic pressure supply means which supplies hydraulic pressure to a hydraulic servo of a predetermined friction engagement element selected according to a gearshift position to be achieved, failure detection means that detects that a failure has occurred in the hydraulic pressure supply means, and fail-safe means that prevents interlock from occurring due to a plurality of friction engagement elements engaging, and prevents a shift from a high-speed gear position to a low-speed gear position when the failure detection means detects that a failure has occurred.
In this case, when the failure detection means detects that a failure has occurred in a hydraulic pressure supply means, interlock occurring as a result of a plurality of friction engagement elements being engaged is prevented from occurring. A predetermined gearshift position on the high-speed position side is then achieved.
Accordingly, since gearshifting from a high-speed position to a low-speed position is prevented along with the prevention of the occurrence of interlock, a large engine braking being applied is prevented. As a result, the generation of gearshift shock is prevented.
Another hydraulic control unit for an automatic transmission according to another exemplary aspect of the invention is provided with hydraulic servos, each of which engages and disengages respective friction engagement elements, hydraulic pressure supply means which supplies hydraulic pressure to a hydraulic servo of a predetermined friction engagement element selected according to a gearshift position to be achieved, failure detection means that detects that a failure has occurred in the hydraulic pressure supply means, and fail-safe means that prevents a neutral condition from being established, and prevents a gearshift from a high-speed gear position to a low-speed gear position when the failure detection means detects that a failure has occurred.
In this case, when the failure detection means detects that a failure has occurred in a hydraulic pressure supply means, the establishment of a neutral condition is prevented. A predetermined gearshift position on the high-speed position side is then achieved.
Accordingly, since gearshifting from a high-speed position to a low-speed position is prevented along with the prevention of the establishment of a neutral condition, a large engine braking being applied is prevented. As a result, the generation of gearshift shock is prevented.
Still another hydraulic control unit for an automatic transmission according to another exemplary aspect of the invention is provided with hydraulic servos, each of which engages and disengages respective friction engagement elements, hydraulic pressure supply means which supplies hydraulic pressure to a hydraulic servo of a predetermined friction engagement element selected according to a gearshift position to be achieved, failure detection means that detects that a failure has occurred in the hydraulic pressure supply means, and fail-safe means that prevents interlock from occurring due to a plurality of friction engagement elements engaging, prevents a neutral condition from being established and prevents a gearshift from a high-speed gear position to a low-speed gear position when the failure detection means detects that a failure has occurred.
In this case, when the failure detection means detects that a failure has occurred in a hydraulic pressure supply means, interlock occurring as a result of a plurality of friction engagement elements being engaged is prevented from occurring and a neutral condition is prevented from being established. A predetermined gearshift position on the high-speed position side is then achieved.
Accordingly, since gearshifting from
Fukaya Naoyuki
Hiramatsu Shigeki
Iijima Yoshihiro
Itou Masahiro
Iwase Mikio
Aisin AW Co. Ltd.
Lewis Tisha D.
Oliff & Berridg,e PLC
LandOfFree
Hydraulic control unit for automatic transmission does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydraulic control unit for automatic transmission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydraulic control unit for automatic transmission will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3161502