192 clutches and power-stop control – Clutches – Operators
Reexamination Certificate
2002-08-29
2004-09-07
Bonck, Rodney H. (Department: 3681)
192 clutches and power-stop control
Clutches
Operators
C192S048910, C192S070120, C192S070190, C192S090000, C192S113350
Reexamination Certificate
active
06786317
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a hydraulic clutch assembly, and more particularly to a hydraulic clutch assembly equipped with a spring-drive hydraulic clutch, which includes a gear rotatably mounted on a transmission shaft and a clutch cylinder fixedly mounted on the transmission shaft, first and second friction elements respectively supported on the gear and the clutch cylinder in such a manner as to be slidable along an axis of the clutch (hereinafter sometimes referred to a clutch axis) and relatively non-rotatable thereto, a pressure disk disposed opposite to the friction elements, and a spring for moving the pressure disk towards the friction elements to bring the first friction element into engagement with the second friction element, in which the pressure disk is moved away from the friction elements by an effect of hydraulic pressure, thereby withdrawing the friction elements from engagement with each other.
In a vehicle with a transmission equipped with the spring-drive hydraulic clutch, the hydraulic clutch is inevitably held in an engaged state when no hydraulic pressure is applied thereto. Accordingly, when an engine of the vehicle has been accidentally stopped, it can be restarted by a so-called pull-start by manually moving the vehicle.
In a vehicle equipped with both the spring-drive hydraulic clutch and a hydraulic-drive hydraulic clutch, it is enough to provide the transmission shaft with a single operational fluid passage for both the hydraulic clutches. As a result, a structure for feeding working fluid to both hydraulic clutches can be simplified.
The hydraulic clutch assembly of the above type having the spring-drive clutch is known for example in Japanese Patent Application Laid-open No. 2000-352446.
However, the spring-drive hydraulic clutch assembly of the conventional type as described in the above-cited publication poses problems as described below.
The spring-drive hydraulic clutch assembly of the conventional type includes a gear rotatably mounted on a transmission shaft, a clutch cylinder fixedly mounted on the transmission shaft, first and second friction elements respectively supported on the gear and the clutch cylinder in such a manner as to be slidable along the clutch axis and relatively non-rotatable thereto, a pressure disk disposed opposite to the friction elements, a spring for pressing the pressure disk towards the friction elements, a hydraulic piston for pressing the pressure disk away from the friction elements against biasing force of the spring upon receiving an effect of hydraulic pressure, and a hydraulic cylinder enclosing the hydraulic piston.
Specifically, the hydraulic cylinder is of an annular shape, which is integrally formed on the clutch cylinder and radially outwardly extending therefrom so as to cover the clutch cylinder. A radially outward portion of the pressure disk protrudes outwardly through the clutch cylinder, while the hydraulic piston is arranged so as to abut against the protrusion of the pressure disk. When the pressure disk is shifted away from the friction elements by the actuation of the hydraulic piston, the clutch is released from an engaged state.
Thus, the conventional spring-drive hydraulic clutch is disadvantageous in the fact that its clutch engagement release mechanism is of a complicated structure and the hydraulic cylinder is positioned on the radially outward side of the clutch cylinder, hence inviting increase in the entire size of the hydraulic cylinder.
It is an object of the present invention to provide a new hydraulic clutch assembly, which is of a relatively simple structure and includes a clutch engagement releasing mechanism that is capable of being placed substantially within an outer diameter of the clutch cylinder.
It is another object of the present invention to provide a new hydraulic clutch assembly that enables a hydraulic-drive clutch to be aligned with a spring-drive hydraulic clutch with a relatively simple structure.
It is still another object of the present invention to provide a clutch assembly that has an improved lubricant feeding structure for a spring-drive hydraulic clutch and a hydraulic-drive hydraulic clutch aligned therewith, aiming at effectively utilizing lubricant.
SUMMARY OF THE INVENTION
According to the present invention, there is provided a hydraulic clutch assembly equipped with a spring-drive hydraulic clutch, the hydraulic clutch including: a gear rotatably mounted on a transmission shaft and a clutch cylinder fixedly mounted on the transmission shaft; a first group of friction elements respectively and relatively non-rotatably supported on the gear and the clutch cylinder in such a manner as to be slidable along an axis of the clutch; a pressure disk disposed opposite to the first group of friction elements; a spring for moving the pressure disk towards the first group of friction elements to bring the friction elements into engagement with each other; a piston disposed in such a manner as to be slidable along the axis of the clutch on the opposite side of the pressure disk with the first group of friction elements therebetween, thereby forming a hydraulic fluid chamber within the clutch cylinder; an operation disk disposed in such a manner as to be slidable along the axis of the clutch between the piston and the first group of friction elements; and an interlocking rod extending along the axis of the clutch for interlocking the operation disk with the pressure disk in such a manner as not to be relatively movable with respect to each other. In this arrangement, the pressure disk is moved away from the first group of friction elements through the operation disk and the interlocking rod by an effect of hydraulic pressure acting on the piston, so that the friction elements are released from engagement with each other.
In the clutch assembly having the above arrangement, the clutch releasing mechanism of the spring-drive hydraulic clutch is constituted not by installing the hydraulic cylinder, which is integrally formed with the clutch cylinder, on the clutch cylinder, but by the operation disk, the piston and the interlocking rod, all of which can be placed within the outer diameter of the clutch cylinder. As a result of the omission of the hydraulic cylinder, a simplified structure can be achieved, and the outer diameter of the hydraulic clutch can be prevented from exceeding the outer diameter of the clutch cylinder, thereby achieving the reduced size of the hydraulic clutch assembly.
In a preferable aspect of the hydraulic clutch assembly, the clutch cylinder forms cutaway portions in an outer circumferential wall thereof, the cutaway portions extending along the axis of the clutch; the pressure disk and the operation disk respectively have protrusions which project into the cutaway portions of the clutch cylinder; and the interlocking rod interlocks the protrusion of the pressure disk with the protrusion of the operation disk.
According to the above arrangement, the interlocking between the operation disk and the pressure disk by means of the interlocking rod can be achieved in remarkably easy manner. Also, at least a part of the interlocking rod can be positioned in the cutaway portion. This enables the outer diameter of the entire hydraulic clutch to be efficiently reduced.
In a more preferable aspect, the protrusions are engaging protrusions to be fitted in the cutaway portions so as to enable the pressure disk and the operation disk to be relatively non-rotatable with respect to the clutch cylinder.
According to the above arrangement, with a simple construction, the operation disk and pressure disk can be securely brought into a non-rotatable state with respect to the clutch cylinder. As a result, engaging force effected by the hydraulic clutch can be increased.
In a more preferable aspect, the second friction element supported on the clutch cylinder has engagement protrusions formed on an outer circumference thereof and being respectively fitted into the cutaway portions so as to be relatively n
Fujita Takumi
Matsufuji Mizuya
Bonck Rodney H.
Kanzaki Kokyukoki Mfg. Co. Ltd.
LandOfFree
Hydraulic clutch assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hydraulic clutch assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydraulic clutch assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3209797