Hybrid type high pressure combustion burner employing...

Combustion – Process of combustion or burner operation – In a porous body or bed – e.g. – surface combustion – etc.

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C431S170000, C431S268000

Reexamination Certificate

active

06712602

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a hybrid combustion burner using catalytic combustion appropriate to combustion conditions of high temperature and high pressure. More particularly, the invention relates to a hybrid high pressure combustion burner employing catalysts and CST (Catalytically Stabilized Thermal, hereafter called as “CST”) combustion with staged mixing systems, in which a primary combustion gas containing reacted gas of a primary gas mixture, which is formed via catalytic combustion, is subject to a secondary mixing with the primary gas mixture containing fuel and high temperature air, completing stable high temperature CST combustion at ultra lean conditions, thereby achieving high temperature combustion reducing the formation of NOx.
2. Description of the Related Art
The ratio of CO
2
amounts discharged by combustion of coal, petroleum and natural gas is considered to be 10:8:6. Natural gas is the cleanest fuel and generates the least CO
2
, among available fossil fuels. Accordingly, Natural Gas Research in the U.S. anticipates that about 50% of the world's generated energy will be provided by gas turbines within the next 20 years. As anticipated, demands for gas turbines are increasing with time.
Technologies for reducing and removing NO
x
can be grouped into combustion modifications and post-combustion processes. Especially, as for the post-combustion processes, SCR (Selective Catalytic Reduction) is the most commonly used. However, this has a problem of very high operation costs, due to requirement of ammonia employed as a reducing agent. On the other hand, the combustion modifications are accomplished by modifying combustion conditions or combustion systems, leading to reduction of NO
x
formation. Such a representative modification is a lean mix combustion technology. However, such lean combustion has a problem of producing noise, oscillation, and more carbon monoxide and unburnt hydrocarbons, which are responsible for unstable CST combustion during combustion.
These problems can be overcome by using a new technology, that is, the catalytic combustion process. Research focusing on catalytic combustion is now actively underway. Catalytic combustion enables stable complete combustion by a surface reaction of a catalyst even at ultra lean conditions, where stable combustion is hardly accomplished only by using CST combustion. Such catalytic combustion makes it possible to set a CST combustion temperature to a lower temperature at which thermal NO
x
is not produced. Accordingly, this is an important method to fundamentally solve the problem of nitrogen oxides formation.
Gas turbine combustors using catalytic combustion are designed to have characteristics different from general gas turbine combustors in terms of their combustion reactions. Upon considering realistic application of catalytic combustion to conventional gas turbines, there is considered not only to simple replacement of the combustors, but also design changes for other components composing the gas turbines. Specifically, in addition to combustors of gas turbines, auxiliary components such as external cases, liners with internal holes, fuel injection systems, and ignition-starting systems are also organically affected by such an application of catalytic combustion. Accordingly, given that only combustors of the conventional gas turbines are replaced based on their modular construction, multi-can type combustors are preferentially selected over annular type combustors.
The multi-can type combustors enable convenient control of catalytic combustion for reasons as described above. Also, current trends around the world prefer multi-can type catalytic combustors. In addition, much research has been directed to methods for installing modular catalytic combustors in place of the conventional combustors of the gas turbines. Such replacement of the conventional combustors of the gas turbines with combustors employing catalysts offers the following expected benefits.
First, upon using catalytic combustors, combustion efficiency is higher than conventional combustors of gas turbines at the ultra lean states. The reason is that complete surface combustion takes place on the surface of a catalyst support, unlike conventional processes such as gas flow-dependent combustion. It is expectable that such complete combustion using catalytic combustion provides much solution for satisfying high temperature operation conditions. High temperature operation conditions have been competitively developed by researchers, with the aim of enhancing thermal efficiency.
Another beneficial effect of catalytic combustion is that amounts of NOx, CO and hydrocarbon generated are reduced. Compared to general CST combustion processes, catalytic combustion occurs at a lower temperature, so the amount of NO
x
generated is reduced. Complete combustion also leads to a reduced amount of hydrocarbon. Such carbon residue reduction may result in decreased abrasion of turbine blades. It is known that a crucial factor determining lifetime of blades in a gas turbine is that carbon residue generated from the combustor damages the blades by collision therewith. Short lifetime of blades thus can be improved by employing catalytic combustion.
Another benefit of catalytic combustion is that hot gas from the combustor has a lower maximum temperature. As a result, cooling requirements accompanying complex structures mounted in conventional gas turbines can be reduced. Actually, upon combustion employing methane for use in operating non-catalytic combustors of gas turbines, a minimum temperature of the combustors is approximately 1000° C. This temperature is a minimum temperature capable of being obtained upon the minimum load operation, for all conventional small-sized turbines for industrial use, and most of gas turbines. On the other hand, as for the catalytic combustors, the maximum temperature of the combustor is determined based on a surface combustion temperature, equivalent ratio of gases, pressure and temperature applied in a premix system, and self-ignition temperature in a mixer of the combustor. Such maximum temperature is 1000° C. or more. Upon the subsequent CST combustion, the CST combustion temperature can be lowered to a temperature at which little thermal NOx is generated. Thus, it is possible to solve some problems of complex structures of cooling systems in the gas turbines, which might be required due to high temperature in the combustors.
Since the 1970s, in Japan, a research consortium has been organized centering around electric power companies, and research has been dominated by main three groups, that is, a first group including Osaka GAS and Toyo CCI and Kobe Steelworks Co., a second group including Tokyo Electric Power Co. and Toshiba, a third group including Central Research Institute of Electric Power and Kansai Electric Power Co. They developed a catalyst of hexaaluminate whose specific surface area is not significantly reduced even at 1400° C., exhibiting resistance to high temperature, and a CST combustor. However, such a ceramic catalyst body has a limitation in terms of thermal shock.
Meanwhile, in the U.S., catalytic combustors for use in gas turbines have been studied since the 1970s. The research has focused on metal honeycomb in which a metal sheet with good thermal shock is coated with a catalyst. Such metal honeycomb is considered to have excellent catalytic effect. For example, Catalytica Energy Inc. was successful in commercializing the first catalytic combustor employing such a catalyst material. The combustor showed performance with ultra low emissions of NO
x
<3 ppm and CO<10 ppm. Despite its favorable properties, there are some disadvantages. Since structures of flow baffle boards are different according to the size of combustors, it is inconvenient to design catalyst bodies, and poor fundamental understanding of catalytic surface-chemistry processes limits scaling up of the combustion systems. Moreover, since unstable CST combustion with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid type high pressure combustion burner employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid type high pressure combustion burner employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid type high pressure combustion burner employing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3284642

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.