Hybrid submarine streamer connector

Electrical connectors – With insulation other than conductor sheath – Metallic connector or contact secured to insulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06319073

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a hybrid electrical and fiber optic connector for a submarine streamer, and, more particularly, to a connector with contacts secured to insulation by a resiliently biased part latching behind a shoulder or into a recess.
2. Description of Related Art
Reflection seismology is one of the most important tools available to petroleum geophysicists for surveying subsurface geologic formations in connection with petroleum exploration. During a typical seismic prospecting survey, energy in the form of an impulse, explosion, or continuous vibration is introduced into the ground near the surface of the earth. The energy waves spread in all directions from the source and are partially reflected by underground structural discontinuities, such as the interfaces between different types of rock. Sensors, called geophones, detect these reflected waves as small displacements of the earth's surface which are then converted into electrical signals that can be recorded, processed, and further analyzed. For example, the time required for the reflected energy to return to the surface at a particular location can be used to determine the depth of the rock interfaces at that location. By plotting this return time for an array of such geophones at various locations along the surface, geophysicists can then assemble a picture of the subsurface rock layers at various depths.
For marine seismic prospecting, hydrophones are used to record the excess pressure generated by reflected sound waves in the water along a profile line being surveyed. The hydrophones are part of a cable, called a submarine streamer, that typically includes a strength member surrounded by numerous electrical conductors or optical fibers for transmitting signals from the hydrophones to a recording device on a tow ship. A single ship moving at 4-6 knots might pull a 10,000 foot long streamer cable having twenty-four or more sections, or stations, joined by connectors. Each streamer station will include ten to forty hydrophones for sensing the reflected energy waves from an explosive gas source, or continuous bubble source, near the ship which is activated over roughly ten to thirty-second intervals. In this manner, a typical seismic survey ship can thus survey about 50 miles of line each day.
Each section of the streamer may include forty, or more, signal transmission lines terminating at male and female connectors on the ends of that section of the streamer. In order to provide accurate information, each of the sections is preferably towed at constant depth, typically thirty-five to forty feet below the surface of the water. However, the streamer can also be exposed to much greater depths. The streamer sections are therefore enclosed in a flexible, plastic sheath which not only provides protection against abrasion and corrosion due to infiltration of salt water, but also allows the streamer to be buoyancy balanced along its length. This balancing is typically accomplished by filling the sheath with a liquid that floats on water (usually a buoyant, kerosene-like liquid such as noroma) and/or by adding lead tape to the exterior of the sheath to provide the appropriate buoyancy at each point along the streamer.
A serious problem arises when the terminating pins, or contacts, disposed in the connectors at either end of a section of the streamer are short-circuited by a conductive buoyancy balancing fluid leaking from the sheath. The contacts may also be exposed to corrosive salt water from the leaking sheath if it is punctured or otherwise damaged. This problem has been addressed in the past by applying a suitable potting compound to the backside of the connector. However, the potting compound is often ineffective at preventing the ingress of salt water and interferes with the repair and/or replacement of the contacts in the coupler.
U.S. Pat. No. 5,510,577 to Corrigan, incorporated by reference into the present application, discloses a multiple wire connector assembly for a marine streamer which addresses these problems by providing a sealing disk disposed between a connector insert and a compression disk. The compression disk is spring-loaded so as to force the sealing disk against the connector insert which then compresses conical nipples in the sealing disk against each of the individual conductor wires. However, leakage can still occur since the wires may bend near their entrance to the sealing disk. Furthermore, since all of the contacts in the connector are electrical contacts, a different connector must be used when fiber optic contacts, or other types of terminals, are required.
SUMMARY OF THE INVENTION
The invention disclosed below addresses these and other drawbacks associated with conventional technology by providing a hybrid marine connector having an insert assembly including a front insulator disk, a rear insulator disk arranged coaxial with the front insulator disk and having a front surface secured to a rear surface of the front insulator disk. A plurality of holes extend through the front and rear insulator disks substantially parallel to a longitudinal axis of the disks. A contact is secured in each of the holes with one end of each contact extending past the front face of the front insulator disk. At least one, preferably O-ring gasket is arranged on each contact for sealing the contact against the inside of the hole in one of the disks. A bolt is also arranged near the central longitudinal axis of the front and rear disks for axially compressing the front insulator disk into abutment with the rear insulator disk.
The invention may also include a collet clip secured in each hole in the front and rear insulator disks with at least one inwardly extending tang or tab for abutting against, and securing, the contact in the hole. Two shoulders may be formed in each of the holes, with one shoulder being formed in each of the disks so that the collet clips may be secured between the shoulders in each hole. Flanges on the contacts may also be secured between the shoulders without using collet clips. The invention may also include an adapter sleeve retained in at least one of the collet clips for adapting the collet clip to secure one of the contacts, such as a fiber optic contact, in the hole.
The invention may be used with a gender changer including an anterior insulator disk, a posterior insulator disk having a front surface abutting a rear surface of the anterior insulator disk, and a plurality of passageways extending through the anterior and posterior insulator disks, where each of the passageways corresponds to a hole through the front and rear insulator disks. A receptacle sleeve is positioned in each passageway for releasably receiving a free end of a contact which is positioned in a corresponding collet clip.
Annular shoulders may be formed in the anterior and posterior insulator disks inside each passageway and the receptacle sleeves positioned between annular shoulders in each disk. For example, the receptacle sleeves may include a central flange for abutting against the shoulders in the passageways. Alternatively, the ends of the receptacle sleeves may abut the shoulders in the passageways. Another bolt is then arranged near the longitudinal axis of the front and rear disks for axially compressing the anterior insulator disk into abutment with the posterior insulator disk.
Finally, the invention also relates to a method of making such an assembly by performing the steps of inserting the collet clips in the holes against a shoulder in one of the front and rear insulator disks, positioning the holes in the other of the front and rear insulator disks over the free ends of the inserted collet clips, axially compressing the front and rear insulator plates by tightening the bolt, and inserting a contact in each of the collet clips with the O-ring on the contact sealing against the wall of the holes in front of the collet clip. The free end of the clipped contacts may then be inserted into the gender charger for coupling

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid submarine streamer connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid submarine streamer connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid submarine streamer connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2605581

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.