Hybrid stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S001160

Reexamination Certificate

active

06805705

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to expandable endoprosthesis devices, generally called stents, which are adapted to be implanted into a patient's body lumen, such as blood vessel, to maintain the patency thereof. These devices are useful in the treatment of atherosclerotic stenosis in blood vessels.
Stents are generally tubular-shaped devices which function to hold open a segment of a blood vessel, coronary artery, or other anatomical lumen. They are particularly suitable for use to support and hold back a dissected arterial lining which can occlude the fluid passageway therethrough.
Further details of prior art stents can be found in U.S. Pat. No. 3,868,956 (Alfidi et al.); U.S. Pat. No. 4,512,338 (Balko et al.); U.S. Pat. No. 4,553,545 (Maass et al.); U.S. Pat. No. 4,733,665 (Palmaz); U.S. Pat. No. 4,762,128 (Rosenbluth); U.S. Pat. No. 4,800,882 (Gianturco); U.S. Pat. No. 4,856,516 (Hillstead); U.S. Pat. No. 4,886,062 (Wiktor); U.S. Pat. No. 6,066,167 (Lau et al.); and U.S. Pat. No. B1 5,421,955 (Lau et al.), which are incorporated herein in their entirety by reference thereto.
Various means have been described to deliver and implant stents. One method frequently described for delivering a stent to a desired intraluminal location includes mounting the expandable stent on an expandable member, such as a balloon, provided on the distal end of an intravascular catheter, advancing the catheter to the desired location within the patient's body lumen, inflating the balloon on the catheter to expand the stent into a permanent expanded condition and then deflating the balloon and removing the catheter. One of the difficulties encountered using prior stents involved maintaining the radial rigidity needed to hold open a body lumen while at the same time maintaining the longitudinal flexibility of the stent to facilitate its delivery. Once the stent is mounted on the balloon portion of the catheter, it is often delivered through tortuous vessels, including tortuous coronary arteries. The stent must have numerous properties and characteristics, including a high degree of flexibility in order to appropriately navigate the tortuous coronary arteries. This flexibility must be balanced against other features including radial strength once the stent has been expanded and implanted in the artery. While other numerous prior art stents have had sufficient radial strength to hold open and maintain the patency of a coronary artery, they have lacked the flexibility required to easily navigate tortuous vessels without damaging the vessels during delivery.
Generally speaking, most prior art intravascular stents are formed from a metal such as stainless steel, which is balloon expandable and plastically deforms upon expansion to hold open a vessel. The component parts of these types of stents typically are all formed of the same type of metal, i.e., stainless steel. Other types of prior art stents may be formed from a polymer, again all of the component parts being formed from the same polymer material. These types of stents, the ones formed from a metal and the ones formed from a polymer, each have advantages and disadvantages. One of the advantages of the metallic stents is their high radial strength once expanded and implanted in the vessel. A disadvantage may be that the metallic stent lacks flexibility which is important during the delivery of the stent to the target site. With respect to polymer stents, they may have a tendency to be quite flexible and are advantageous for use during delivery through tortuous vessels, however, such polymer stents may lack the radial strength necessary to adequately support the lumen once implanted.
What has been needed and heretofore unavailable is a stent which has a high degree of flexibility so that it can be advanced through tortuous passageways and can be readily expanded and yet have the mechanical strength to hold open the body lumen into which it expanded. The present invention satisfied this need.
SUMMARY OF THE INVENTION
The present invention is directed to an expandable stent which is relatively flexible along its longitudinal axis to facilitate delivery through tortuous body lumens, but which is stiff and stable enough radially in an expanded condition to maintain the patency of a body lumen such as an artery when implanted therein.
The stent of the invention generally includes a plurality of radially expandable cylindrical rings which are relatively independent in their ability to expand and to flex relative to one another. The individual radially expandable cylindrical rings of the stent are formed from a metallic material and are aligned on a common longitudinal axis. The resulting stent structure is a series of radially expandable cylindrical rings which are spaced longitudinally close enough so that small dissections in the wall of a body lumen may be pressed back into position against the lumenal wall, but not so close as to compromise the longitudinal flexibility of the stent. The cylindrical rings are attached to each other by flexible links such that at least one flexible link attaches adjacent cylindrical rings. If desired, more than one link can be used to attach adjacent cylindrical rings. At least some of the links are formed from a polymeric material that provides flexibility to the link and allows the stent to more easily bend or flex along its longitudinal axis as the stent navigates through tortuous vessels or coronary arteries. The flexibility of the links is balanced against the links having sufficient column strength to properly orient and separate the cylindrical rings along the stent longitudinal axis so that the rings do not telescope into each other or overlap one another. The combination of the flexible cylindrical rings and flexible links cumulatively provides a stent which is flexible along its length and about its longitudinal axis, yet is still relatively stiff in the radial direction after it has been expanded in order to maintain the patency of a vessel and to resist collapse.
One preferred structure for the expandable cylindrical rings which form the stent of the present invention is generally a circumferential undulating pattern, e.g., serpentine. The open reticulated structure of the stent allows for the perfusion of blood over a large portion of the arterial wall which can improve the healing and repair of a damaged arterial lining.
The stent embodying features of the invention can be readily delivered to the desired body lumen, such as a coronary artery (peripheral vessels, bile ducts, etc.), by mounting the stent on an expandable member of a delivery catheter, for example a balloon, and advancing the catheter and stent assembly through the body lumen to the target site. Generally, the stent is compressed or crimped onto the balloon portion of the catheter so that the stent does not move longitudinally relative to the balloon portion of the catheter during delivery through the arteries, and during expansion of the stent at the target site.
When the stent expanded, the radial expansion of the expandable cylindrical rings deforms the undulating or serpentine pattern similar to changes in a waveform which result from decreasing the waveform's amplitude and the frequency. The undulating patterns of the individual cylindrical rings can be in phase with each other or out of phase, depending on the stent design. The cylindrical rings of the stent are plastically deformed when expanded so that the stent will remain in the expanded condition and therefore they must be sufficiently rigid when expanded to prevent the collapse thereof in use. During expansion of the stent, portions of the undulating pattern may tip outwardly resulting in projecting members on the outer surface of the expanded stent. These projecting members tip radially outwardly from the outer surface of the stent and embed into the vessel wall and help secure the expanded stent so that it does not move once it is implanted.
The links which interconnect adjacent cylindrical rings may have a transverse cross-section similar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281679

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.