Refrigeration – Storage of solidified or liquified gas – With conservation of cryogen by reduction of vapor to liquid...
Reexamination Certificate
2000-09-25
2002-04-09
Doerrler, William (Department: 3744)
Refrigeration
Storage of solidified or liquified gas
With conservation of cryogen by reduction of vapor to liquid...
Reexamination Certificate
active
06367264
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Not applicable
STATEMENT OF FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
Not applicable
BACKGROUND
1. Field of Invention
This invention relates to the apparatus and methods suitable for liquid carbon dioxide storage and process systems typically located at customer or user sites which supply liquid carbon dioxide (CO2) to devices which then utilize the liquid CO2 so as to provide various refrigeration effects. Such systems, while they may have many other beneficial uses, are especially useful as ground support/filling apparatus for trucks or rail cars expending liquid carbon dioxide for in-transit cooling, or for devices for food chilling or freezing or for making dry ice.
2. Description of Prior Art
Solid carbon dioxide (dry ice) has long been used as an expendable refrigerant for many cooling applications because of its ease of application, its non-toxity, its very large refrigeration effect when subliming, its direct change to the gas phase and its desirable low range of refrigeration temperatures. Dry ice, at atmospheric pressure, sublimes at minus 110° F. and has a heat of sublimation (refrigeration) of 244 btu/lb. Initially, liquid CO2 typically was made at central manufacturing plants, converted to dry ice in the form of blocks and then transported to the customer or using sites, stored, then placed or mixed when and where cooling was desired. If CO2 vapor was desired for carbonation, the blocks were placed inside high pressure converters (about 1,000 psig) and allowed to warm to ambient temperature.
However, the inconvenience of handling dry ice and the attendant weight loss after purchase, but before use (which typically averaged 50%), caused the CO2 industry to change to liquid CO2 distribution and customer storage. The standard for the U.S. CO2 industry became about 0° F. liquid CO2 with an equilibrium pressure of about 300 psig for distribution and customer storage. This temperature was selected as one that could be maintained readily by small single stage, air cooled freon type refrigeration units adjacent to an insulated customer storage vessel, with the coils for cooling the CO2 located in the ullage space of the customer storage vessel; and all so that the maximum allowable working pressure (MAWP) of the vessel was not exceeded. If vapor was desired for carbonation, etc., it was piped direct from the vessel's ullage volume or for large users, a liquid CO2 vaporizer was utilized. If the CO2 was to be used for cooling, the liquid CO2 was piped directly from the customer storage vessel to the using device. Subsequently, about 10,000 such vessels with internal coils and attendant refrigeration units of various sizes have been installed within the United States. In addition, many variations of this arrangement have been produced. A fleet of liquid CO2 trucks are also in place to distribute liquid CO2, and liquid CO2 production plants typically produced liquid CO2 suitable in temperature and pressure to support this system. However, one lb. of liquid CO2 at these conditions converts to only about 0.47 lb. of dry ice, thus providing only a heat of sublimation (refrigeration) of about 115 btu per lb. of liquid CO2 used. During the conversion about 0.53 lb. of CO2 is released as vapor. Thus while the change from a dry ice distribution system to a liquid CO2 distribution system greatly reduced the losses of dry ice CO2 and eliminated the inconvenience of dry ice handling; the use of liquid CO2 for cooling applications imposed an undesirable CO2 loss. The steel chosen to fabricate the insulated storage vessel was chosen to be safe at low ambient temperatures and various insulations were used, including foam glass. More recently, vertical storage vessels with vacuum insulation are available, which typically do not contain internal coils, and which are suitable for temperatures as low as about minus 40° F., and are replacing the older vessels.
It was well known that lower temperature liquid CO2 produced a higher percentage of dry ice/cooling when used, thus came a trend to production and distribution of lower temperature liquid CO2, so as to better support dry ice/cooling applications. Accordingly, in many geographic areas, a temperature of minus 20° F. and 225 psig for liquid CO2 delivery became feasible. Virtually no changes in existing equipment was required to accommodate this lowered distribution temperature, and any vessel's refrigeration unit, while less required, were left in place because of vacation and other low or non-use periods. However, principally because of metal safety concerns for the storage vessels, distribution equipment, etc., to further reduce the liquid CO2's temperature at the production plant would require replacing much of the existing distribution equipment and customer storage vessels. At about minus 70° F., CO2 begins to form a solid, and thus cannot be readily transported as a liquid, but a minus 65° F. liquid produces about 0.57 lb. of dry ice, a conversion improvement of about 20%. It has been estimated that about 4,000 tons per day of liquid CO2 is used for cooling applications in the U.S., thus 800 tons per day could be saved if all could be cooled to minus 65° F. before use. Accordingly, a number of refrigeration devices have been developed to cool liquid CO2 at the final use location for a wide variety of applications. Examples are: U.S. Pat. No. 4,888,955 issued December, 1989 to the present inventor, et al; U.S. Pat. Nos. 3,660,985 issued May, 1972, 3,672,181 issued June, 1972, 3,754,407 issued August, 1973, 4,100,759 issued July, 1978, 4,127,008 issued November, 1978, 4,211,085 issued July, 1980, 4,224,801 issued September, 1980, 4,693,737 issued September, 1987, 4,695,302 issued September, 1987, and 5,934,095 issued August, 1999, all to the present inventor.
While cooling liquid CO2 to low temperatures may seem to be a straightforward mechanical refrigeration problem; the highly unusual nature of CO2 (especially the triple point occurring at useful temperature and pressures) combined with the problems in moving a liquid that becomes a solid if allowed to de-pressurize (even momentarily) below the triple point pressure, combined to prevent a totally satisfactory solution. Some of the specific problems unique to CO2 and thus the industry include the facts that: (1) flowing liquid CO2 when de-pressurized even momentarily to about 60 psig (the triple point), almost instantly becomes a mixture of liquid and solid and only changes back to liquid with the relatively slow application of heat; and (2) in any subsequent flow, this mixture easily clogs lines, valves and use devices as additional solid/slush CO2 forms, and any subsequent pressure reduction will cause it to turn progressively solid. Accordingly, most prior art inventions did not move very cold liquid CO2 to a use point, without providing sub-cooling with a pump or by some type of gas pressurization.
A related problem is due to the nature of use of most expendable refrigerants, of which CO2 is member, whether used in liquid form or in solid form (dry ice). Expendable refrigerants typically are used precisely when the cooling is desired and in the exact amount needed, thus the use rate can vary greatly. Low use rates can be followed by high use rates, varying quickly from no use to very high use. Patents '985, '407, '759, '085, '737, '302, '955, and '095 all solved the problem of when very cold liquid CO2 is being used, by incorporating a storage function of previously cooled liquid CO2 for supply to CO2 using/dispensing devices along with the storage of warmer liquid CO2; thus storing the cold liquid CO2 in the sub-cooled condition. However, none were versatile enough to find wide use.
While sought for years and despite all these efforts, a sufficiently versatile solution to have wide applicability has evaded the CO2 industry.
SUMMARY OF THE INVENTION
The present invention provides methods and systems for safely receiving liquid CO2 at a range of temperature and pressures into either a
Doerrler William
Drake Malik N.
LandOfFree
Hybrid low temperature liquid carbon dioxide ground support... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hybrid low temperature liquid carbon dioxide ground support..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid low temperature liquid carbon dioxide ground support... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2880304