Hybrid electric vehicle with electric motor providing...

Motor vehicles – Power – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S704000, C060S705000, C180S065510, C318S376000, C701S022000

Reexamination Certificate

active

06367570

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to motor vehicle power plants, and more particularly, to “hybrid” motor vehicles powered by both electrical and fossil fuel power plants. Still more particularly, the present invention relates to a parallel hybrid electric/fossil fuel power plant for a motor vehicle such as a passenger car, in which the electric motor shaft is connected in parallel with an internal combustion engine shaft, and the electric motor is controlled to balance the load of the internal combustion engine.
BACKGROUND AND SUMMARY OF THE INVENTION
For most of the 20th century, the gasoline or diesel powered internal combustion engine has been extremely successful in powering motor vehicles throughout the world. The internal combustion engine efficiently delivers high power outputs by converting fossil fuels such as gasoline into mechanical power. Despite its many advantages, however, the fossil-fuel powered internal combustion engine has some significant drawbacks:
it requires fossil fuels, an expensive, limited resource; and
it pollutes the air with poisonous and environmentally damaging combustion byproducts.
These drawbacks are so significant that there has recently been a massive worldwide effort to come up with alternatives.
The all-electric vehicle is one possible alternative. In this all-electric alternative, an electric motor and a source of electric power would replace the internal combustion engine. The electric motor would provide power to drive the wheels, and the electric power source would deliver electricity to drive the motor. An all-electric vehicle has zero exhaust gas emissions and requires no fossil fuels. Widespread use of all-electric vehicles would decrease the economic dependency of major industrialized nations on foreign oil producing countries, and could help us provide cleaner air.
Millions of dollars have been poured into research and development of a practical, commercial all-electric vehicle design that can realize these objectives. Unfortunately, the first practical cost-effective mass-produced all-electric vehicle is still many years away. For the same reasons that the first experimental electric vehicle designs were thrown aside in the last century, all-electric vehicles simply cannot compete with fossil fuel powered vehicles. The problem has to do with efficient power storage.
Because a motor vehicle moves, it must be self-contained and store its own power. Ideally, the power storage should be small, lightweight, and deliver a lot of power. Today's motor vehicles carry two different power storage devices: an electric battery and a gasoline tank. Most of the vehicle's power comes from the gas tank—with the electric battery contributing only enough power to turn a starter motor that gets the internal combustion engine started. Why?
By weight, gasoline stores on the order of fifty times the power versus a battery of the same weight. You would need about a ton of electric batteries to store the same amount of power provided by the gasoline held by the average passenger car fuel tank. Such a large quantity of electric batteries would cost on the order of several thousand dollars, would be very bulky, and may need to be replaced every few years as they wear out.
The batteries also have to be recharged somehow once they become “dead.” In today's cars, an alternator converts power from the internal combustion engine into electricity for recharging the battery. If there were no internal combustion engine, the recharging power would have to come from some other source. While some recharging power could come from the force of gravity (for example, the momentum from going down a hill could be converted into electricity), most of the recharging power would have to come from somewhere else—such as an electric wall socket the car owner plugs his car into every night.
This battery recharging process could take many hours or even overnight—as compared with the essentially instant refilling of a passenger car gas tank at a filling station. This means that an all-electric vehicle inherently has a very limited range. The driver would have to stop for the night whenever the batteries discharged too much.
Although many people don't realize it, battery recharging from a wall socket can also cause pollution. The idea that electric power is clean and non-polluting is a fiction. Although some electric power plants (for example, nuclear and hydroelectric power plants) do not pollute the air, the vast majority of electric power plants in the United States burn coal or other combustible materials—and therefore are major polluters. Some people say that an all-electric vehicle would simply move air pollution from individual car exhausts to electric power plant smokestacks.
Major research has been devoted to improving the storage capabilities of electric batteries. Modern batteries are lighter, longer lasting and more powerful than their predecessors from years past. However, the fact remains that filling a gasoline tank is a much more convenient and less expensive way to store power for a high speed, long distance motor vehicle. Human nature being what it is, people are generally reluctant to personally sacrifice a lot of time and money to help the environment. Recycling newspapers is one thing, but spending $15,000 for a car that cannot go on long trips is another thing entirely.
Because battery powered all-electric vehicles cannot compete with vehicles having internal combustion engines, some people have tried to develop so called “hybrid” electric vehicles that use both electric and gasoline power. The basic idea is that a hybrid electric vehicle may provide many of the advantages of both electric and fossil fuel power storage while eliminating at least some of the drawbacks of each. The U.S. Department of Energy has become committed to making hybrid electric vehicles commonplace on American highways by the year 2003. Its National Renewable Energy Laboratory (NREL) is working with industry to develop hybrid vehicles with high fuel economy and low exhaust emissions. The NREL is supporting development programs at General Motors, Ford Motor Company, Chrysler Co., and a variety of independents. Other major automotive manufacturers throughout the world are working on the same problem.
All of this work by all of these different people has led to a number of different hybrid electric approaches. One common approach is the so-called “series” design. The “series” design attempts to solve some of the battery problems discussed above by using an internal combustion engine to generate electrical power. In the “series” design, a fossil-fuel powered internal combustion engine turns the shaft of an electric power generator. The generator's electrical output powers the electric motor. The electric motor is used to turn the vehicle's wheels.
This “series” hybrid design has the advantage of reducing the number and weight of the electric batteries required to power the vehicle. Because the vehicle generates electrical power as it goes, it does not need as many electric batteries and also avoids a long battery recharge time. In addition, the gasoline engine can be operated under essentially constant conditions that can provide low exhaust emissions and low fuel consumption. But this “series” hybrid electric vehicle has some significant drawbacks. Its main drawback is that it is very inefficient in its use of gasoline. The process of converting the mechanical power produced by the gasoline engine into electrical power using a generator for powering the electric traction motor is relatively inefficient. This inefficient process wastes power.
A different approach is the so-called “parallel” hybrid-electric design. In the “parallel” approach, an internal combustion engine and an electric motor can both apply power to a motor vehicle drive train. See, for example, Kalberlah, “Electric Hybrid Drive Systems For Passenger Cars and Taxis”, SAE Publication No. 910247 for a survey of various parallel hybrid electric designs. There are many such “pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid electric vehicle with electric motor providing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid electric vehicle with electric motor providing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid electric vehicle with electric motor providing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2917079

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.