Hybrid drive system

Motor vehicles – Power – Electric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06793027

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a hybrid-driven device with a battery and a fuel cell as power sources of a drive motor for mobile devices such as vehicles, watercrafts, and the like.
2. Background Art
A hybrid type electric car has been developed for the purpose of reducing pollution generated by vehicles, which includes an electric motor for driving the vehicle. Two kinds of batteries, for constant speed running and high output running, are combined as power sources of the vehicle to increase travel distance for each charge and to provide efficient and stable power supply during constant speed running and high output running, such as acceleration. In such a hybrid-driven vehicle, a system has been contemplated in which methanol is used as primary fuel, and a fuel cell is used as a power supply source. This system includes a reformer and a shift reactor for processing carbon monoxide, and a secondary battery in addition to the power supply source, such as a lead battery, for carrying peak load. In such a hybrid-driven vehicle, a vehicle controller is provided for controlling the motor in an optimum condition by supplying electric power efficiently in response to the operating conditions after actuation of the power source. Modules constituting equipment such as a motor, a fuel cell and a battery are provided with sensors for detecting data, such as temperature, rpm or a state of the voltage and current, corresponding to the modules necessary for drive control of the vehicle, respectively. The vehicle controller calculates required electric power or expected travel distance according to the detected output, for charging/discharging of the battery and the fuel cell, and drive control of the motor, or the like.
In constructing such a control system, it is desirable for each module to be easily installed into the vehicle and so as to provide easy parts replacement including that of related control system parts, for improved application of modules, and also to receive reliable control data, for more reliable control.
In driving a vehicle using two power sources such as a battery and a fuel cell described above, the vehicle controller calculates expected travel distance from the data on the residual amount of power source capacities and fuel in the normal operating conditions of both power sources, makes an effective use of the power sources during running while verifying reliable travel to the destination. The controller also makes proper use of the power sources, such as supplementary use of the battery to compensate for the delayed output response of the fuel cell during acceleration, so as to perform drive control of power sources through their controllers, for constant stable running.
However, if an abnormality occurs in the battery or the fuel cell, continuous use of the power sources might disable drive control based on the data from the power source controller, preventing stable running, and the abnormal state might expand more widely due to delayed measures against the abnormality, causing damage to other sections.
In view of the foregoing, it is a first object of this invention to provide a hybrid-driven vehicle capable of effecting improved efficiency of assembly and maintainability of modules forming a power system such as a motor and power supply sources such as a fuel cell and a battery, as well as reliable control.
In addition, it is a second object of this invention to provide a hybrid-driven vehicle in which the states of two power sources are detected during operation to calculate an approximate vehicle range based on the detection data, and the states of power sources are monitored constantly during operation such that the vehicle is able to travel smoothly to the destination.
Further, it is a third object of this invention to provide a hybrid-driven vehicle in which in the event that an abnormality is detected in either of the two hybrid drive power sources, the use of the power source is stopped promptly to prevent expansion of the abnormal state so as to cope with the abnormality immediately. Operation is continued using the other power source, for smooth drive control of the power system.
SUMMARY OF THE INVENTION
In order to achieve the foregoing first object, a first aspect of the invention includes a hybrid-powered vehicle having a first and a second power supply source, a main switch for switching on the power sources, and a device controller for controlling the device, wherein said power system and said first and second power supply sources are formed as integrated module units, respectively, each module unit is provided with a module controller a sensor for detecting the state of the module, and a sensor configured to store data indicative of the detected state.
In this arrangement, equipment constituting the power system such as a motor, the first power supply source such as a fuel cell and the second power supply source such as a battery, are arranged as module units such as a motor unit, a fuel cell unit and a battery unit, respectively, to be combined integrally together with related equipment and components, and incorporated unit by unit in a device such as a vehicle. The module units contain module controllers for controlling the respective modules. The module controllers have memory for storing detection data from state detection means of the modules, so that each module unit is able to perform data communication with the device controller.
By arranging the motor, fuel cell and battery as module units containing controllers, respectively, efficiency of assembly work and maintainability of modules are improved. Additionally control systems corresponding to the modules are integrated for the respective modules, thereby providing improved reliability of the control, easy parts replacement including that of the control system parts and improved applicability of modules with effective parts control.
In a preferred arrangement, the device controller is adapted to perform bidirectional data communication with the module controllers.
In this arrangement, data is stored in each module controller. The device controller can receive requisite data on request to the module controller. Thus, the memory structure is simplified on the device controller side and effective control can be performed on the same communication line for each module.
In another preferred arrangement, after a predetermined time has elapsed from a time when the main switch is turned off, preparation processing is performed on said first or said second power supply source for the next operation.
In this arrangement, after a predetermined time has elapsed from a time when the main switch is turned off, it is determined whether the capacity of the power supply source is optimized sufficiently for normal operation. Optionally when operation is stopped and the main switch is turned off, residual capacity of the first or the second power supply source is detected. Then, capacity-up processing is performed at a time earlier than the time of the next driving schedule entered by the user by a length of time necessary to increase the detected residual electric capacity up to an optimum value. Thus, the device can be held on standby in an optimum condition such that operation can be started stably and reliably at the time of next running for continued normal operation.
In addition, in order to achieve the second object, another aspect of this invention may provide a hybrid-powered vehicle with a first and a second power supply source as power sources for driving the vehicle, wherein an available amount of power supply by each of said first and said second power supply source is detected, and a controller is configured to calculate an approximate vehicle range from the available amount of power supply.
In this arrangement, during operation, the available amount of power supply of each of the first and the second power source, for example, residual capacity or residual fuel, is detected and the approximate vehicle range is calculated on the basis of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid drive system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid drive system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid drive system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3261566

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.