Hybrid cooling system for electronics module

Heat exchange – With retainer for removable article – Electrical component

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C165S080400, C062S259200, C361S696000, C361S697000, C257S714000, C257S722000

Reexamination Certificate

active

06213194

ABSTRACT:

All of the above-referenced applications and issued Letters Patent are hereby incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present invention is generally directed to providing reliable cooling systems for mainframe computer systems or for any electronic system requiring cooling. More particularly, the present invention is directed to redundant cooling systems, and in particular, to a hybrid auxiliary cooling system for an electronics module.
BACKGROUND OF THE INVENTION
In recent years, the semiconductor industry has taken advantage of the fact that CMOS circuits dissipate less power than bipolar circuits. This has permitted more dense packaging and correspondingly faster CMOS circuits. However, almost no matter how fast one wishes to run a given electronic circuit chip, there is always the possibility of running it faster if the chip is cooled and thermal energy is removed from it during its operation. This is particularly true of computer processor circuit chips and even more true of these chips when they are disposed within multi-chip modules (MCMs), which generate significant amounts of heat. Because there is a great demand to run these processor modules at higher speeds, the corresponding clock frequencies at which these devices must operate become higher. In this regard, it should be noted that it is known that power generation rises as a function of the square of the clock frequency. Accordingly, it is seen that the desire for faster computers generates not only demand for computer systems but also generates thermal demands in terms of energy which must be removed for faster, safer and more reliable circuit operation. In this regard, it is to be particularly noted that, in the long run, thermal energy is the single biggest impediment to semiconductor operation integrity.
In addition to the demand for higher and higher processor speeds, there is also a concomitant demand for reliable computer systems. This means that users are increasingly unwilling to accept down time as a fact of life. This is particularly true in the mainframe and server realms when zero down time and minimum maintenance requirements are typical goals. There are yet other requirements that must be met when designing cooling units for computer systems, especially those which operate continuously and which may in fact be present in a variety of different thermal environments. For example, the cooling system should be designed, controlled and set up so that various failure modalities do not bring the entire computer system down nor risk damage to the components within the system. All of these requirements must be considered in providing a cooling system for a computer system, particularly for a mainframe and/or server system.
DISCLOSURE OF THE INVENTION
Briefly summarized, the present invention comprises in one aspect a cooling system for an electronic module which includes a refrigeration cooled cold plate and an auxiliary air cooled heat sink. The refrigeration cooled cold plate is thermally coupled to the electronic module for removing heat generated by the electronic module via circulation fluid passing through the refrigeration cooled cold plate. The auxiliary air cooled heat sink is also thermally coupled to the electronic module to provide supplementary cooling of the electronic module. In an enhanced embodiment, the auxiliary air cooled heat sink is physically attached to the refrigeration cooled cold plate and thermally coupled to the electronic module across the refrigeration cooled cold plate.
In another aspect, the invention comprises a method for cooling a computer system having an electronic module. The method includes providing a refrigeration cooled cold plate thermally coupled to the electronic module for removing heat generated by the electronic module via circulation fluid passing through the refrigeration cooled cold plate. Additionally, an air cooled heat sink is provided thermally coupled to the refrigeration cooled cold plate. The air cooled heat sink is operated in one mode to cool air passing therethrough via its thermal coupling to the refrigeration cooled cold plate, thereby also cooling the ambient temperature of the computer system.
In a further aspect, a method for fabricating a cooling system for a computer system having an electronic module is provided. This method includes: providing a refrigeration cooled cold plate and thermally coupling the refrigeration cooled cold plate to the electronic module for removing heat generated by the electronic module; and thermally coupling an air cooled heat sink to the electronic module across the refrigeration cooled cold plate for auxiliary cooling of the electronic module.
Accordingly, it is an object of the present invention to provide a system and method for cooling computer and other electronic systems.
It is another object of the present invention to provide a cooling system which possesses redundancy for the purpose of providing uninterrupted use of electronic equipment.
It is also an object of the present invention to provide a cooling system for electronic equipment which essentially preserves its stand-alone, air-cooled nature.
It is yet another object of the present invention to provide a cooling system for electronic components in which air and refrigerant cooling are combined in an integrated package.
It is a still further object of the present invention to provide a cooling system for electronic assemblies, modules and cards.
It is also an object of the present invention to provide a cooling system for electronic components which include fail-safe means for operation in the event of a number of different failure modalities, including refrigerant leakage.
It is also an object of the present invention to provide a system and method for continued computer usage in the event of cooling system problems.
It is a still further object of the present invention to provide a cold plate for electronic component cooling which preserves refrigerant flow isolation while at the same time maintaining good thermal connectivity to a module to be cooled and also provides good thermal conduction and flow-wise isolation between dual refrigerant loops.
It is a still further object of the present invention to provide an electronic component cooling system which is self-contained.
It is also an object of the present invention to provide a computer or electronic system in which the refrigerant cooling system is a rack-mountable, field-replaceable unit.
It is also an object of the present invention to provide a cooling system for an electronic module which can be attached to a refrigeration system by means of flexible and detachable refrigerant supply lines.
It is yet another object of the present invention to provide a refrigeration unit which is capable of operating continuously.
It is still another object of the present invention to provide a refrigeration unit which is capable of variable heat removal capacity, particularly in response to varying thermal demands.
It is a still further object of the present invention to provide a refrigeration unit which is easily startable, easily shut down and is capable of running under low thermal load situations.
It is also an object of the present invention to provide a refrigeration system which is capable of operating in a wide range of ambient and thermal load conditions.
It is still another object of the present invention to provide a hybrid auxiliary cooling system for an electronic module which combines a refrigeration cooled cold plate and an auxiliary air cooled heat sink.
It is a still further object of the present invention to provide a hybrid auxiliary cooling system which provides for continued cooling of an electronics component notwithstanding inoperability of a refrigeration cooled cold plate coupled to the electronics module.
It is also an object of the present invention to provide for enhanced ambient cooling of a computer system commensurate with cooling of an electronics module of the computer system.
It is yet another object of the present invention to provid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid cooling system for electronics module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid cooling system for electronics module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid cooling system for electronics module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.