Hybrid carrier for wide-array inkjet printhead assembly

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S058000

Reexamination Certificate

active

06431683

ABSTRACT:

THE FIELD OF THE INVENTION
The present invention relates generally to inkjet printheads, and more particularly to a wide-array inkjet printhead assembly.
BACKGROUND OF THE INVENTION
A conventional inkjet printing system includes a printhead, an ink supply which supplies liquid ink to the printhead, and an electronic controller which controls the printhead. The printhead ejects ink drops through a plurality of orifices or nozzles and toward a print medium, such as a sheet of paper, so as to print onto the print medium. Typically, the orifices are arranged in one or more arrays such that properly sequenced ejection of ink from the orifices causes characters or other images to be printed upon the print medium as the printhead and the print medium are moved relative to each other.
In one arrangement, commonly referred to as a wide-array inkjet printing system, a plurality of individual printheads, also referred to as printhead dies, are mounted on a single carrier. As such, a number of nozzles and, therefore, an overall number of ink drops which can be ejected per second is increased. Since the overall number of drops which can be ejected per second is increased, printing speed can be increased with the wide-array inkjet printing system.
Mounting a plurality of printhead dies on a single carrier, however, requires that the single carrier perform several functions including fluid and electrical routing as well as printhead die support. More specifically, the single carrier must accommodate communication of ink between the ink supply and each of the printhead dies, accommodate communication of electrical signals between the electronic controller and each of the printhead dies, and provide a stable support for each of the printhead dies. Unfortunately, effectively combining these functions in one unitary structure is difficult.
Accordingly, a need exists for a carrier which provides support for a plurality of printhead dies while accommodating fluidic and electrical routing to each of the printhead dies.
SUMMARY OF THE INVENTION
One aspect of the present invention provides an inkjet printhead assembly. The inkjet printhead assembly includes a carrier including a substructure and a substrate mounted on the substructure, and a plurality of printhead dies each mounted on the substrate. The substrate includes a plurality of layers and has a plurality of conductive paths extending therethrough. As such, each of the printhead dies are electrically coupled to at least one of the conductive paths of the substrate.
In one embodiment, the substructure and the substrate each have a first side and a second side. As such, the substrate is mounted on the first side of the substructure and the printhead dies are mounted on the first side of the substrate.
In one embodiment, the substrate includes a first interface on the first side thereof. As such, at least one of the conductive paths communicates with the first interface. Thus, each of the printhead dies are electrically coupled to the first interface.
In one embodiment, the substrate includes a second interface. As such, at least one of the conductive paths communicates with the second interface.
In one embodiment, the substructure has at least one ink passage extending therethrough and the substrate has a plurality of ink passages defined therein. As such, at least one of the ink passages of the substrate communicates with the at least one ink passage of the substructure and at least one of the printhead dies.
In one embodiment, the second side of each of the substructure and the substrate is opposite the first side thereof.
In one embodiment, the layers of the substrate include conductive layers and non-conductive layers. In one embodiment, each of the conductive layers form a portion of at least one of the conductive paths. In one embodiment, the conductive layers include at least one power layer, at least one ground layer, and at least one data layer. In one embodiment, the non-conductive layers of the substrate are formed of a ceramic material.
In one embodiment, the substructure includes a plastic material.
In one embodiment, the substructure includes at least one datum adapted to position the inkjet printhead assembly in at least one dimension. In one embodiment, the substructure includes a plurality of datums adapted to position the inkjet printhead assembly in three dimensions.
Another aspect of the present invention provides a method of forming an inkjet printhead assembly. The method includes providing a substructure, mounting a substrate including a plurality of layers and having a plurality of conductive paths extending therethrough on the substructure, and mounting a plurality of printhead dies on the substrate and electrically coupling the printhead dies with at least one of the conductive paths of the substrate.
Another aspect of the present invention provides a carrier adapted to receive a plurality of printhead dies. The carrier includes a substructure having a first side and a second side, and a substrate mounted on the first side of the substructure. As such, the substrate has a first side adapted to receive the printhead dies and a second side. In addition, the substrate includes a plurality of layers and has a plurality of conductive paths extending therethrough.
Another aspect of the present invention provides a method of forming a carrier for a plurality of printhead dies. The method includes providing a substructure having a first side and a second side, and mounting a substrate having a first side adapted to receive the printhead dies and a second side on the first side of the substructure, wherein the substrate includes a plurality of layers and has a plurality of conductive paths extending therethrough.
The present invention provides a carrier for a wide-array inkjet printhead assembly. As such, the carrier provides support for a plurality of printhead dies and accommodates fluidic and electrical routing to each of the printhead dies. In addition, the carrier facilitates positioning of the inkjet printhead assembly within an inkjet printing system.


REFERENCES:
patent: 4463359 (1984-07-01), Ayata et al.
patent: 5016023 (1991-05-01), Chan et al.
patent: 5079189 (1992-01-01), Drake et al.
patent: 5098503 (1992-03-01), Drake
patent: 5160945 (1992-11-01), Drake
patent: 5469199 (1995-11-01), Allen et al.
patent: 5696544 (1997-12-01), Komuro
patent: 5719605 (1998-02-01), Anderson et al.
patent: 5742305 (1998-04-01), Hackleman
patent: 5755024 (1998-05-01), Drake et al.
patent: 5939206 (1999-08-01), Kneezel et al.
patent: 5946012 (1999-08-01), Courian et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid carrier for wide-array inkjet printhead assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid carrier for wide-array inkjet printhead assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid carrier for wide-array inkjet printhead assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2951432

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.