Hyaluronan synthase gene and uses therof

Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S193000, C435S252300, C435S252330, C435S320100, C435S836000, C435S839000, C435S848000, C536S023200

Reexamination Certificate

active

06833264

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a nucleic acid segment having a coding region segment encoding enzymatically active
Streptococcus equisimilis.
hyaluronate synthase (seHAS), and to the use of this nucleic acid segment in the preparation of recombinant cells which produce hyaluronate synthase and its hyaluronic acid product. Hyaluronate is also known as hyaluronic acid or hyaluronan.
2. Brief Description of the Related Art
The incidence of streptococcal infections is a major health and economic problem worldwide, particularly in developing countries. One reason for this is due to the ability of Streptococcal bacteria to grow undetected by the body's phagocytic cells, i.e., macrophages and polymorphonuclear cells (PMNs). These cells are responsible for recognizing and engulfing foreign microorganisms. One effective way the bacteria evade surveillance is by coating themselves with polysaccharide capsules, such as a hyaluronic acid (HA) capsule. The structure of HA is identical in both prokaryotes and eukaryotes. Since HA is generally nonimmunogenic, the encapsulated bacteria do not elicit an immune response and are, therefore, not targeted for destruction. Moreover, the capsule exerts an antiphagocytic effect on PMNs in vitro and prevents attachment of
Streptococcus
to macrophages. Precisely because of this, in Group A and Group C
Streptococci
, the HA capsules are major virulence factors in natural and experimental infections. Group A
Streptococcus
are responsible for numerous human diseases including pharyngitis, impetigo, deep tissue infections, rheumatic fever and a toxic shock-like syndrome. The Group C
Streptococcus equisimilis.
is responsible for osteomyelitis, pharyngitis, brain abscesses, and pneumonia.
Structurally, HA is a high molecular weight linear polysaccharide of repeating disaccharide units consisting of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA). The number of repeating disaccharides in an HA molecule can exceed 30,000, a M
r
>10
7
. HA is the only glycosaminogylcan synthesized by both mammalian and bacterial cells particularly Groups A and C
Streptococci
and Type A
Pasturella multocida.
These strains make HA which is secreted into the medium as well as HA capsules. The mechanism by which these bacteria synthesize HA is of broad interest medicinally since the production of the HA capsule is a very efficient and clever way that
Streptococci
use to evade surveillance by the immune system.
HA is synthesized by mammalian and bacterial cells by the enzyme hyaluronate synthase which has been localized to the plasma membrane. It is believed that the synthesis of HA in these organisms is a multi-step process. Initiation involves binding of an initial precursor, UDP-GlcNAc or UDP-GlcA. This is followed by elongation which involves alternate addition of the two sugars to the growing oligosaccharide chain. The growing polymer is extruded across the plasma membrane region of the cell and into the extracellular space. Although the HA biosynthetic system was one of the first membrane heteropolysaccharide synthetic pathways studied, the mechanism of HA synthesis is still not well understood. This may be because in vitro systems developed to date are inadequate in that de novo biosynthesis of HA has not been accomplished.
The direction of HA polymer growth is still a matter of disagreement among those of ordinary skill in the art. Addition of the monosaccharides could be to the reducing or nonreducing end of the growing HA chain. Furthermore, questions remain concerning (i) whether nascent chains are linked covalently to a protein, to UDP or to a lipid intermediate, (ii) whether chains are initiated using a primer, and (iii) the mechanism by which the mature polymer is extruded through the plasma membrane of the
Streptococcus
. Understanding the mechanism of HA biosynthesis may allow development of alternative strategies to control Streptococcal and Pasturella infections by interfering in the process.
HA has been identified in virtually every tissue in vertebrates and has achieved widespread use in various clinical applications, most notably and appropriately as an intra-articular matrix supplement and in eye surgery. The scientific literature has also shown a transition from the original perception that HA is primarily a passive structural component in the matrix of a few connective tissues and in the capsule of certain strains of bacteria to a recognition that this ubiquitous macromolecule is dynamically involved in many biological processes: from modulating cell migration and differentiation during embryogenesis to regulation of extracellular matrix organization and metabolism to important roles in the complex processes of metastasis, wound healing, and inflammation. Further, it is becoming clear that HA is highly metabolically active and that cells focus much attention on the processes of its synthesis and catabolism. For example, the half-life of HA in tissues ranges from 1 to 3 weeks in cartilage to <1 day in epidermis.
It is now clear that a single protein utilizes both sugar substrates to synthesize HA. The abbreviation HAS, for the HA synthase, has gained widespread support for designating this class of enzymes. Markovitz et al. successfully characterized the HAS activity from
Streptococcus pyogenes
and discovered the enzymes's membrane localization and its requirements for sugar nucleotide precursors and Mg
2+
. Prehm found that elongating HA, made by B6 cells, was digested by hyaluronidase added to the medium and proposed that HAS resides at the plasma membrane. Philipson and Schwartz also showed that HAS activity cofractionated with plasma membrane markers in mouse oligodendroglioma cells.
HAS assembles high M
r
HA that is simultaneously extruded through the membrane into the extracellular space (or to make the cell capsule in the case of bacteria) as glycosaminoglycan synthesis proceeds. This mode of biosynthesis is unique among macromolecules since nucleic acids, proteins, and lipids are synthesized in the nucleus, endoplasmic reticulum/Golgi, cytoplasm, or mitochondria. The extrusion of the growing chain into the extracellular space also allows for unconstrained polymer growth, thereby achieving the exceptionally large size of HA, whereas confinement of synthesis within a Golgi or post-Golgi compartment could limit the overall amount or length of the polymers formed. High concentrations of HA within a confined lumen could also create a high viscosity environment that might be deleterious for other organelle functions.
Several studies attempted to solubilize, identify, and purify HAS from strains of
Streptococci
that make a capsular coat of HA as well as from eukaryotic cells. Although the streptococcal and murine oligodendroglioma enzymes were successfully detergent-solubilized and studied, efforts to purify an active HAS for further study or molecular cloning remained unsuccessful for decades. Prehm and Mausolf used periodate-oxidized UDP-GlcA or UDP-GlcNAc to affinity label a protein of ~52 kDa in streptococcal membranes that co-purified with HAS. This led to a report claiming that the Group C streptococcal HAS had been cloned, which was unfortunately erroneous. This study failed to demonstrate expression of an active synthase and may have actually cloned a peptide transporter. Triscott and van de Rijn used digitonin to solubilize HAS from streptococcal membranes in an active form. Van de Rijn and Drake selectively radiolabeled three streptococcal membrane proteins of 42, 33, and 27 kDa with 5-azido-UDP-GlcA and suggested that the 33-kDa protein was HAS. As shown later, however, HAS actually turned out to be the 42-kDa protein.
Despite these efforts, progress in understanding the regulation and mechanisms of HA synthesis was essentially stalled, since there were no molecular probes for HAS mRNA or HAS protein. A major breakthrough occurred in 1993 when DeAngelis et al. reported the molecular cloning and characterization of the Group A streptococcal gen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hyaluronan synthase gene and uses therof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hyaluronan synthase gene and uses therof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hyaluronan synthase gene and uses therof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3302444

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.