Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Using tissue cell culture to make a protein or polypeptide
Reexamination Certificate
1997-06-09
2002-03-19
Ungar, Susan (Department: 1642)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Using tissue cell culture to make a protein or polypeptide
C435S325000, C435S330000, C530S387100, C424S130100, C436S547000
Reexamination Certificate
active
06358710
ABSTRACT:
TECHNICAL FIELD
The present invention relates to humanized antibodies derived from chimeric antibody NR-LU-13 or other antibodies having the same or similar binding specificity, fragments thereof (including, e.g., variable regions and scFv's), conjugates (including fusion proteins) containing such humanized antibodies or fragments, and the use of such humanized antibodies or fragments in diagnostic and therapeutic pretargeting methods and compositions. The present invention also relates to the use of such humanized antibodies in conventional immunotherapeutic and immunodiagnostic methods and compositions, e.g., for tumor treatment and imaging.
BACKGROUND OF THE INVENTION
A specific antibody which has been previously disclosed to be an effective targeting moiety is NR-LU-10, a murine monoclonal antibody produced against a human cancer antigen. NR-LU-10 is a nominal 150 kilodalton molecular weight murine IgG
2b
pancarcinoma monoclonal antibody that recognizes an approximately 40 kilodalton glycoprotein antigen expressed on most carcinomas. NR-LU-10 has been safely administered to hundreds of patients in human clinical trials. However, its disadvantage is that it is a murine derived monoclonal antibody. This is disadvantageous because immunogenicity may potentially reduce targeting efficacy if the antibody is administered repeatedly. While therapeutic efficacy may be obtained using a single administration, multiple administrative protocols are currently favored.
As a means of reducing immunogenicity of murine antibodies, various methods have been reported in the literature. Such methods include the production of chimeric antibodies which contain murine variable regions and human constant regions, the production of single chain antibodies which comprise variable binding sequences derived from murine antibodies, the production of antigen-binding fragments of murine antibodies which because of their smaller size are potentially less immunogenic, the production of human monoclonal antibodies and the production of “humanized” antibodies.
Murine monoclonal antibodies may be made more human-like, e.g., by genetically recombining the nucleotide sequence encoding the murine Fv region (i.e., containing the antigen binding sites) or the complementarity determining regions thereof with nucleotide sequences encoding human constant region sequences (comprised in the Fc region of antibody). These antibodies are typically referred to as chimeric antibodies.
In this regard, a chimeric antibody derived from NR-LU-10, referred to as NR-LU-13, has previously been reported. This antibody contains the murine Fv region of NR-LU-10 and therefore comprises the same binding specificity as NR-LU-10. Thus, this chimeric antibody binds the NR-LU-10 antigen.
Humanization ideally provides an antibody that is non-immunogenic, with complete retention of the antigen-binding properties of the parent non-human antibody molecule. Non-immunogenicity allows for the administration of multiple dosages without adverse immunogenic reaction. Various methods for producing humanized antibodies have been reported in the literature. For example, humanized antibodies can potentially be produced: (a) by grafting only the non-human CDRs onto human framework and constant regions (Jones et al.,
Nature
321:522-25 (1986); Verhoeyen et al.,
Science
239:1534-1536 (1988)); or (b) by transplanting the entire non-human variable domains (to preserve ligand-binding properties) but also “cloaking” them with a human-like surface by replacement of exposed residues to reduce immunogenicity (also referred to as “veneered” antibodies) (Padlan,
Molec. Immun
. 28:489-498 (1991); Padlan,
Molec. Immun
. 31(3):169-217 (1994)).
Retention of murine residues within human variable region framework domains reportedly helps retain proper binding function of the resultant humanized antibody. Humanized antibodies have been reported to potentially decrease or eliminate the immunogenicity of the antibody in a host recipient, thereby permitting an increase in the bioavailability and a reduction in the possibility of adverse immune reactions, thus potentially enabling multiple antibody administrations. Also, the synthesis of scFv and antibody fragments such as Fv, Fd, Fab, Fab′, and F(ab)′
2
fragments, derived from antibodies having a desired binding specificity comprises another known means of producing targeting moieties having lesser immunogenicity than intact antibodies. Essentially, single chain antibodies and antibody fragments because of their smaller size could be less immunogenic than intact antibodies.
It is also known that recombinant proteins, e.g., antibodies, are glycosylated differently in different host cells used for expression. Essentially, different host cells have a characteristic manner by which they glycosylate specific sites on proteins referred to as glycosylation sites or glycosylation motifs.
For example, plant cells primarily glycosylate proteins by O-linked glycosylation, whereas animal cells typically glycosylate proteins by N-linked and O-linked glycosylation. Also, the specific carbohydrates and the glycosylation pattern varies dependent upon the particular host cells.
It has been reported in the literature that oligosaccharides may be significant insofar as the targeting of proteins to specific sites. Moreover, it is also known that carbohydrates may elicit an immunogenic response. Accordingly, there is the possibility that proteins expressed in foreign host cells may elicit an immunogenic response because of carbohydrate residues which are introduced by the host cells used for expression. This is particularly problematic if the foreign host cells glycosylate very differently from humans. For example, there is the possibility that mammalian proteins expressed in plant cells may be immunogenic because plant cells glycosylate proteins very dissimilarly to mammalian cells.
Due to the difficulties related to immunogenicity of murine or chimeric antibodies that bind to the antigen bound by antibody NR-LU-13, there is a need in the art for improved compositions and methods. The present invention fulfills this need and further provides other related advantages.
SUMMARY OF THE INVENTION
It is an object of the invention to provide humanized antibodies derived from NR-LU-13 (or from other non-human antibodies which bind the antigen bound by NR-LU-13) or fragments of such humanized antibodies, which exhibit reduced immunogenicity or toxicity in humans but retain the ability to bind the NR-LU-13 antigen.
It is another object of the invention to provide conjugates containing humanized antibodies derived from NR-LU-13 or from other non-human antibodies or fragments thereof which bind the antigen bound by NR-LU-13.
It is still another object of the invention to provide improved two-step pretargeting methods wherein the improvement comprises using as the targeting moiety a humanized antibody derived from NR-LU-1 3 or from another non-human antibody or fragments thereof which bind the antigen bound by NR-LU-13.
It is another object of the invention to provide improved three-step targeting methods wherein the improvement comprises using as the targeting moiety a humanized antibody derived from NR-LU-13 or from another non-human antibody or fragments thereof which bind the antigen bound by NR-LU-13.
It is yet another object of the invention to provide compositions for treatment or diagnosis which contain conjugates comprising humanized antibodies derived from NR-LU-13 or from other non-human antibodies or fragments thereof which bind the antigen bound by NR-LU-13.
It is a more specific object of the invention to provide conjugates comprising a humanized antibody derived from NR-LU-13 or a fragment thereof capable of binding the antigen bond by NR-LU-13, directly or indirectly attached to a member of a ligand or anti-ligand partner, preferably avidin or streptavidin or a fragment or derivative thereof capable of binding biotin.
It is another object of the invention to provide a conjugate comprising a humanized antibody derive
Graves Scott S.
Henry Andrew H.
Hylarides Mark D.
Mallett Robert W.
Pedersen Jan T.
Davis Minh-Tam
NeoRx Corporation
Seed Intellectual Property Law Group PLLC
Ungar Susan
LandOfFree
Humanized antibodies that bind to the antigen bound by... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Humanized antibodies that bind to the antigen bound by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Humanized antibodies that bind to the antigen bound by... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2817431