Human thrombospondin repeat proteins and polynucleotides...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06720412

ABSTRACT:

1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with animal proteins having thrombospondin repeats. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotide sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotide sequences that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of diseases and disorders, or cosmetic or nutriceutical applications.
2. BACKGROUND OF THE INVENTION
Thrombospondins have been implicated in, inter alia, mediating angiogensis, cancer, and development. Proteins having thrombospondin repeats can act as receptors, secreted extracellular matrix proteins, and proteases.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with proteins having thrombospondin repeats.
The novel human nucleic acid sequences described herein, encode alternative proteins/open reading frames (ORFs) of 1,691, 446, 372, 724, 650, 845, 771, and 1,617 amino acids in length (see SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, and 16 respectively).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotide sequences (e.g., expression constructs that place the described polynucleotide sequence under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or “knockouts” (which can be conditional) that do not express a functional NHP.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequences of the described NHP ORFs that encode the described NHP amino acid sequences. SEQ ID NO:17 describes a NHP ORF and flanking regions.


REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4594595 (1986-06-01), Struckman
patent: 4631211 (1986-12-01), Houghten
patent: 4689405 (1987-08-01), Frank et al.
patent: 4713325 (1987-12-01), Lutz
patent: 4946776 (1990-08-01), Ritterband
patent: 5252743 (1993-10-01), Barrett et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5700637 (1997-12-01), Southern
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5869336 (1999-02-01), Meyer et al.
patent: 5877397 (1999-03-01), Lonberg et al.
patent: 5948767 (1999-09-01), Scheule et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 6110490 (2000-08-01), Thierry
patent: 6150584 (2000-11-01), Kucherlapati et al.
patent: 2003/0059768 (2003-03-01), Vernet et al.
patent: WO 94 13794 (1994-06-01), None
Mahairas et al. Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc Natl Acad Sci U S A. Aug. 17, 1999; 96(17):9739-44.*
Bonaldo MF, Lennon G, Soares MB. Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res Sep. 1996; 6(9):791-806. (Abstract).*
Database EM_HUM Online! EMBL; Nov. 11, 1999, Ohara et al, “Homo sapiens mRNA for KIAA1233 protein, partial cds” retreived from EBI, accession No. AB033059, XP002176788.
Database Swall Online!May 1, 2000, Nagase et al.: “KIAA1233 Protein (Fragment)” retrieved from EBI, accession No. Q9UL17, XP002176789.
Nagase et al. Prediction of the coding sequences of unidentified human genes XV The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro: DNA Researh. vol 6, 1999, pp. 337-345, XP000865804, gene No. KIAA1233.
Database EM_EST “Online!EMBL: Jan. 5, 1988, Hillier et al.: zj33e01 s1 Soares_fetal_liver_spleen_1NFLS_S1 Homo sapiens cDNA clone Image: 452088 3′similar to TR: P97857 P97857 Secretory Protein Containing Thrombospondin Motifs., MRNA sequence” retrieved from EBI, accession No. AA707140, XP002176790.
International Search Report, International Application No. PCT/US01/05290.
Bird et al, 1988, “Single-Chain Antigen-Binding Proteins”, Science 242:423-426.
Bitter et al, 1987, “Expression and Secretion Vectors for Yeast”, Methods in Enzymology 153:516-544.
Colbere-Garapin et al, 1981, “A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells”, 150:1-14.
Gautier et al, 1987, “a-DNA IV: &agr;-anomeric and &bgr;-anomeric tetrahymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding”, Nucleic Acids Research 15(16):6625-6641.
Greenspan et al, 1993, “Idiotypes: structure and immunogenicity”, FASEB Journal 7:437-444.
Huse et al, 1989, “Generation of a Large Combinatorial Library of the Immunoglobulin Reperoire in Phage Lambda”, Science 246:1275-1281.
Huston et al, 1988, “Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli”, Proc. Natl. Acad. Sci. USA 85:5879-5883.
Inoue et al. 1987, “Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H”, FEBS Letters 215(2):327-330.
Inoue et al, 1987, “Synthesis and hybridization studies on two complementary nona92′-O-methy)ribonucleotides”, Nucleic Acids Research 15(15):6131-6149.
Inouye & Inouye, 1985, “Up-promoter mutations in the lpp gene ofEscherichia coli”, Nucleic Acids Research 13(9):3101-3110.
Janknecht et al. 1991, “Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus”, PNAS 88:8972-8976.
Kohler & Milstein, 1975, “Continuous cultures of fused cells secreting antibody of predefinced specificity”, Nature 256:495-497.
Logan et al, 1984, “Adenovirus triparite leader sequence enhances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowry et al, 1980, “Isolation of Transforming DNA: Cloning the Hamster aprt Gene”, Cell 22:817-823.
Morrison et al, 1994, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. 81:6851-6855.
Mulligan & Berg, 1981, “Selection of animal cells that express theEscherichia coligene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Nisonoff, 1991, “Idiotypes: Concept and Applications”, J. of Immunology 147:2429-2438.
O'Hare et al, 1981, “Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase”, Proc. Natl. Acad. Sci. USA 78(3):1527-1531.
Santerre et al, 1984, “Expression of prokaryotic genes for hygromycin B and G418 resistance ans dominant-selection markers in mouse L cells”, Gene 30:147-156.
Sarin et al, 1988, “Inhibit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human thrombospondin repeat proteins and polynucleotides... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human thrombospondin repeat proteins and polynucleotides..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human thrombospondin repeat proteins and polynucleotides... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3187351

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.