Human therapeutic uses of BPI protein products

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S021800, C514S921000, C530S324000, C530S350000, C530S351000, C530S830000, C424S085100, C424S085200, C424S529000, C424S534000

Reexamination Certificate

active

06191112

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to therapeutic methods and more particularly to methods for treatment of humans exposed to bacterial endotoxin in blood circulation as a result of, e.g., Gram negative bacterial infection, accidental injection of endotoxin-contaminated fluids, translocation of endotoxin from the gut, release of endotoxin into circulation as a result of antibiotic mediated bacterial cytolysis and the like.
Gram negative bacterial endotoxin plays a central role in the pathogenesis of gram negative sepsis and septic shock, conditions which remain leading causes of morbidity and death in critically ill patients. Endotoxin interacts with inflammatory cells, releasing endogenous mediators such as cytokines, hydrolases, peptides, prostaglandins and other compounds that contribute to the pathophysiology of septic shock. While principal causes of entry of endotoxin into circulation are Gram negative bacteremia and translocation of bacteria and bacterial products from the gut, endotoxin also may enter circulation as the result of accidental injection of contaminated fluids or through release of endotoxin from bacteria lysed as a consequence of antibiotic therapy. In the recent past, therapeutic methods proposed for treatment of sepsis and septic shock have had as their focus attempts to bind endotoxin in circulation and inhibit direct and indirect release into circulation of proinflammatory substances mediated by the presence of endotoxin. Anti-endotoxin antibodies, for example, have shown promise in inhibition of endotoxin effects in humans.
A difficulty consistently encountered in developing therapeutic methods and materials for treatment of endotoxemia in humans has been the general unreliability of in vitro and even non-human in vivo test results as an indicator of human therapeutic potential. Because the effects of endotoxin in circulation are complex and involve direct and indirect responses by many cell types in the body, test results in attempts to intervene in endotoxin's effects on a particular cell type in vitro present an incomplete basis for assessment of in vivo effects. Animal studies are complicated by differences in the effect of bacterial endotoxin on different animal species and in different models with the same species. While humans are exquisitely sensitive to endotoxin, the responses of other animals vary significantly. For example, mice and rats are far more resistant to endotoxin on a weight basis than are rabbits and dogs; a life-threatening dose in rabbits would produce minimal effects in mice. Moreover, the types of effects noted are quite variable. Dogs display intestinal hemorrhages following sublethal but shock-producing doses of endotoxin while other commonly used laboratory animals do not. Mice housed at usual room temperature become hypothermic after injection of endotoxin but develop fever when housed at 30° C. See, e.g., page xx in the Introduction in
Cellular Biology of Endotoxin,
L. Berry ed., Volume 3 in the series
Handbook of Endotoxin
(R. Proctor, series ed.) Elsevier, Amsterdam, 1985.
Of interest to the background of the invention are numerous reports concerning the in vivo effects of administration of endotoxin to healthy human volunteers. Martich et al.,
Immunobiol.,
187:403-416 (1993) provides a current and detailed review of the literature addressing the effects on circulatory system constituents brought about by experimental endotoxemia in otherwise healthy humans. Noting that the responses initiated by endotoxin in humans are common to the acute inflammatory response that is part of the host reaction to tissue injury or infection, the authors maintain that administration of endotoxin serves as a unique means of evaluating inflammatory responses as well as responses specific to endotoxin. The authors also note that, while administration of endotoxin to healthy humans is not a precise model for the entirety of host responses in septic shock, it does allow investigation of the initial host inflammatory response to bacterial endotoxin.
Martich et al. note that intravenous administration of endotoxin is uniformly accompanied by a febrile response and various constitutional changes (myalgia and the like) which are attenuated by ibuprofen but not by the phosphodiesterase inhibitor, pentoxifylline. Cardiovascular responses qualitatively similar to those observed in clinical sepsis are observed in experimental endotoxemia in humans. Characteristic increases are observed in circulating cytokines such as tumor necrosis factor &agr; (TNF), interleukin 6 (IL-6); interleukin 1&bgr; (IL-1&bgr;), interleukin 8 (IL-8), and granulocyte colony stimulating factor (GCSF). Inhibitory soluble receptors of TNF were also noted to rise in a characteristic pattern following increases in levels of circulating TNF. The studies reported on in Martich ea al. provided observations that ibuprofen increased levels of circulating TNF and IL-6 in experimental endotoxemia and that pentoxifylline decreased circulating TNF, but not circulating IL-6.
Human experimental endotoxemia was noted to give rise to humoral inflammatory responses similar to those observed in sepsis. The fibrinolytic system is activated and levels of tissue plasminogen activator (tPA) in circulation rise, accompanied by increases in a 2-plasmin inhibitor-plasmin complexes (PAP), confirming activation of plasminogen by tPA. Endotoxin administration to humans has been observed to prompt transitory leukopenia followed by rapid leukocytosis. Neutrophil degranulation occurs with attendant release of elastase (measured as elastas/&agr;1-antitrypsin (EAA) complexes) and lactoferrin into circulation.
Martich et al. conclude that endotoxin administration to humans represents an important model of acute inflammation which reproduces many of the inflammatory events that occur during sepsis and septic shock and provides a unique means of studying host responses to an important bacterial product.
Following publication of the Martich et al. review article, the same research group reported on a study of experimental endotoxemia wherein an attempt was made to ascertain whether endotoxin administration into circulation could give rise to increased cytokine levels in the lung as measured by broncheoalveolar lavage (BAL). Boujoukos et al.,
J. Appl. Physiol.,
74(6):3027-3033 (1993). Even when ibuprofen was co-administered to enhance endotoxin mediated levels of circulating TNF and IL-6 in humans, no increases in TNF, IL-6 or IL-8 levels were observed in BAL fluid, suggesting that cytokine responses to endotoxin in circulation were compartmentalized and did not directly involve lung tissue endothelia.
Studies of the cardiovascular disturbances in septic shock have established that shock is usually characterized by a high cardiac index (CI) and a low systemic vascular resistance index (SVRI). [Parker et al.,
Crit. Care. Med.,
15:923-929 (1987); Rackow et al.,
Circ. Shock,
22:11-22 (1987); and Parker et al.
Ann. Intern. Med.,
100:483-490 (1984).] Of additional interest to the background of the invention are studies of experimental endotoxemia in humans which have demonstrated depression of myocardial contractility and diastolic dysfunction. [Suffredini et al.,
N. Eng. J. Med.,
321:280-287 (1989).]
Bactericidal/Permeability-Increasing protein (BPI) is a protein isolated from the granules of mammalian polymorphonuclear neutrophils (PMNs), which are blood cells essential in the defense against invading microorganisms. Human BPI protein isolated from PMNs by acid extraction combined with either ion exchange chromatography [Elsbach,
J. Biol. Chem.,
254:11000 (1979)] or
E. coli
affinity chromatography [Weiss, et al.,
Blood,
69:652 (1987)] has optimal bactericidal activity against a broad spectrum of gram-negative bacteria. The molecular weight of human BPI is approximately 55,000 daltons (55 kD). The amino acid sequence of the entire human BPI protein, as well as the DNA encoding the protein, have been elucidated in FI

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human therapeutic uses of BPI protein products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human therapeutic uses of BPI protein products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human therapeutic uses of BPI protein products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2613309

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.