Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
2001-08-15
2002-09-10
Prouty, Rebecca E. (Department: 1652)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C435S226000, C435S219000
Reexamination Certificate
active
06448388
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins sharing sequence similarity with mammalian proteases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, or the treatment of physiological disorders or diseases.
2. BACKGROUND OF THE INVENTION
Proteases cleave protein substrates as part of degradation, maturation, and secretory pathways within the body. Proteases have been associated with, inter alia, regulating development, diabetes, obesity, infertility, modulating cellular processes, and infectious disease.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal proteases and particularly zinc metalloproteases.
The novel human nucleic acid (cDNA) sequences described herein, encode proteins/open reading frames (ORFs) of 491 and 1224 amino acids in length (see SEQ ID NOS: 2 and 4 respectively).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHPs, NHP peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described gene under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or “knock-outs” (which can be conditional) that do not express a functional NHP.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP products, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4594595 (1986-06-01), Struckman
patent: 4631211 (1986-12-01), Houghten
patent: 4689405 (1987-08-01), Frank et al.
patent: 4713326 (1987-12-01), Dattagupta et al.
patent: 4873191 (1989-10-01), Wagner et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5252743 (1993-10-01), Barrett et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5700637 (1997-12-01), Southern
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5830721 (1998-11-01), Stemmer et al.
patent: 5837458 (1998-11-01), Minshull et al.
patent: 5869336 (1999-02-01), Meyer et al.
patent: 5877397 (1999-03-01), Lonberg et al.
patent: 5948767 (1999-09-01), Scheule et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 6110490 (2000-08-01), Thierry
patent: 6150584 (2000-11-01), Kucherlapati et al.
Hurskainen TL, Hirohata S, Seldin MF, Apte SS. (1999) ADAM-TS5 , and ADAM T-S6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem.;274(36):25555-63.*
Sequence alignment SEQ ID No.: 4 with AF140675, ADAM-TS7.*
Bird et al, 1988, “Single-Chain Antigen-Binding Proteins”, Science 242:423-426.
Bitter et al, 1987, “Expression and Secretion Vectors for Yeast”, Methods in Enzymology 153:516-544.
Colbere-Garapin et al, 1981, “A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells”, J. Mol. Biol. 150:1-14.
Gautier et al, 1987 “&agr;-DNA IV:&agr;-anomeric and &bgr;-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding”, Nucleic Acids Research 15(16):6625-6641.
Gordon, 1989, “Transgenic Animals”, International Review of Cytology, 115:171-229.
Greenspan et al, 1993, “Idiotypes: structure and immunogenicity”, FASEB Journal 7:437-434.
Gu et al, 1994, “Deletion of DNA Polymerase &bgr; Gene Segment in T Cells Using Type-Specific Gene Targeting”, Science 265:103-106.
Huse et al, 1989, “Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda”, Science 246:1275-1281.
Huston et al, 1988, “Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli”, Proc. Natl. Acad. Sci. USA 85:5879-5883.
Inoue et al, 1987, “Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H”, FEBS Letters 215(5):327-330.
Inoue et al, 1987, “Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides”, Nucleic Acids Research 15(15):6131-6149.
Inouye & Inouye, 1985, “Up-promter mutations in lpp gene ofEscherichia coli”, Nucleic Acids Research 13(9):3101-3110.
Janknecht et al, 1991, “Rapid and efficient purification of native histidine-tagged protein expressed by recombinant Avaccinoa virus”, PNAS 88:8972-8976.
Kohler & Milstein, 1975, “Continuous cultures of fused cells secreting antibody of prdefined specificity”, Nature 256:495-497.
Lasko et al, 1992, “Targeted oncogene activation by site-specific reombination in transgenic mice”, Proc. Natl. Acad. Sci. USA 89:6232-6236.
Lavitrano et al, 1989, “Sperm Cells ad Vectors for Introducing Froeign DNA into Eggs: Genetic Transformation of Mice”, Cell 57:717-723.
Lo, 1983, “Transformation by Iontophoretic Miroinjection of DNA: Multiple Integrations without Tandem Insertions”, Mol. & Cell Bioilopy 3(10):1803-1814.
Logan et al, 1984, “Adenovirus tripartite leader sequence enchances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowy et al, 1980, “Isolation of Transforming DNA: clonig the Hamster aprt Gene”, Cell 22:817-823.
Morrison et al, 1984, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. USA 81:6851-6855.
Mulligan & Berg, 1981, “Selection for animal cells that express theEscherichia coligene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Neuberger et al, 1984, “Recommbinant antibodies processing novel effector functions”, Nature 312:604-608.
Nisonoff, 1991, “Idiotypes: Concepts and Applications”, J. of Immunology 147:2429-2438.
O'Hare et al, 1981, “Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase”, Proc. Natl. Acad. Sci. USA 78(3):1527-1531.
Ruther et al, 1983, “Easy identification of cDNA clones”, EMBO Journal 2(10):1791-1794.
Santerre et al, 1984, “Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells”, Gene 30:147-156.
Sarin et al, 1988, “Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates”, Proc. Natl. Acad. Sci. USA 85:7448-7451.
Smith et al, 1983, “Molecular Engineering of the Autographa californica Nuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene”, J. Virol. 46(2):584-593.
Stein et al, 1988, “Physiochemical properties of phosphorothioat
Friddle Carl Johan
Hilbun Erin
Lexicon Genetics Incorporated
Prouty Rebecca E.
Swope Sheridan L
LandOfFree
Human proteases and polynucleotides encoding the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human proteases and polynucleotides encoding the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human proteases and polynucleotides encoding the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2907988