Human platelet-derived growth factor receptors

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007200, C436S501000, C536S023500, C530S350000

Reexamination Certificate

active

06372438

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the development of diagnostic and therapeutic agents and, in particular, to compositions based on platelet-derived growth factor receptors.
BACKGROUND OF THE INVENTION
Platelet-derived growth factor (PDGF) is a major mitogen for cells of mesenchymal origin. The protein mitogen is usually a 32 kDa protein heterodimer usually composed of two polypeptide chains, A and B, linked by disulfide bonds. In addition to the PDGF AB heterodimer, two homodimeric forms of PDGF, denoted AA and BB, have been identified.
The first event in PDGF-mediated mitogenesis is the binding of PDGF to its receptor at the cell membrane. This interaction triggers a diversity of early cellular responses including activation of receptor tyrosine kinase, increased phosphatidylinositol turnover, enhanced expression of a group of genes, activation of phospholipase A2, changes in cell shape, an increase in cellular calcium concentration, changes in intracellular pH, and internalization and degradation of bound PDGF. These changes are followed by an increase in the rate of proliferation of the target receptor containing cells.
The ability of a polypeptide to stimulate growth of a particular cell type in vitro does not prove that it serves the same function in vivo, but the roles of many growth factors on cells are being studied to determine the roles that the factors play in the whole organism. In vitro, platelet-derived growth factor is a major polypeptide mitogen in serum for cells of mesenchymal origin such as fibroblasts, smooth muscle cells, and glial cells. In vivo, PDGF does not circulate freely in blood, but is stored in the a granules of circulating blood platelets. During blood clotting and platelet adhesion, the granules are released, often at sites of injured blood vessels, thus implicating PDGF in the repair of blood vessels. PDGF may stimulate migration of arterial smooth muscle cells from the medial to the intimal layer of the artery where the muscle cells may proliferate. This is likely to be an early response to injury.
PDGF is being studied to determine how cell proliferation is controlled in the body. The growth factor has been implicated in wound healing, in atherosclerosis, in myeloproliferative disease, and in stimulating genes associated with cancerous transformation of cells, particularly c-myc and c-fos. Therefore, PDGF agonists may be useful in promoting wound healing. PDGF antagonists may also be useful in preventing atherosclerosis, in retarding blood vessel narrowing that occurs after cardiovascular intervention and in controlling cancerous proliferation.
The interaction of PDGF with cells is mediated, in part, by a receptor for the mitogen. The PDGF receptor is therefore a very important component in mitogenic stimulation by the growth factor. However, the inability to characterize the direct interaction between the PDGF and its receptor and between the PDGF receptor and intracellular components has hampered the development of reagents needed in the diagnosis or treatment of physiological conditions or disorders characterized by abnormal or undesired PDGF responses. For these reasons, a dramatic need exists to characterize the structural and physiological properties of PDGF receptors.
SUMMARY OF THE INVENTION
In accordance with the present invention, DNA sequences encoding human platelet-derived growth factor receptor (hPDGF-R) polypeptides have been isolated and sequenced. In one embodiment, expression constructs are provided comprising one or more sequences that encode PDGF-receptor proteins that can be secreted or associated with the membrane of a mammalian cell. The membrane associated receptor should be functionally similar to or equivalent to a wild-type receptor thereby conferring a PDGF sensitive mitogenic response on cells lacking the receptor. The construct can be used, inter alia, for producing large amounts of the PDGF-receptor or fragments, for enhancing PDGF response of cells, for determining the regions of the receptor polypeptides involved in transducing the mitogenic signal in response to PDGF binding, for providing mutated analogs of the receptor, for evaluating drugs for their physiologic activity, and for probing the integrity of sequences nearby the chromosomal loci of the receptor genes. In particular, various soluble fragments of the receptor are provided, many possessing various properties of cell associated hPDGF-R proteins. Novel methods utilizing these constructs are also provided.
The present invention provides a purified and isolated recombinant nucleic acid of less than about 50 kbp comprising at least about 24 contiguous nucleotides which encode a human platelet-derived growth factor receptor (hPDGF-R) polypeptide segment. Preferably the segment is a soluble polypeptide. In particular embodiments, the segment consists essentially of a full length extracellular region of a B type or an A type hPDGF receptor, e.g., a sequence of a polypeptide in Table 2 or Table 3. In other embodiments, the nucleic acid encodes a segment with a phosphorylation site.
Usually, the encoded segment is less than about 300 amino acids, and will preferably be capable of binding to PDGF, be a substrate for phosphorylation, or be capable of binding to a PI3 kinase. In other embodiments, the encoded segment lacks a substantially complete intracellular region.
The invention also embraces a cell transformed with the described nucleic acids, typically where the cell is a mammalian cell. In particular embodiments, the cell further contains a glycosylation enzyme originating from a non-fungal species.
Expression vectors are also provided, and in certain embodiments, the nucleic acid nucleotides encoding the segment are operably linked to a promoter. Recombinant nucleic acids are provided which further encode a heterologous polypeptide which is fused to the hPDGF-R segment.
As another aspect of the invention, methods are provided for evaluating the ability of a compound to function as a hPDGF-R agonist or antagonist, utilizing the step of comparing the amount of a PDGF-induced response from a control cell with that in a cell transformed with a hPDGF-R peptide fragment encoding nucleic acid. In various embodiments, the PDGF-induced response is compared by measuring synthesis of DNA in the cells. After contacting the cells with cell with PDGF.
Polypeptide embodiments include a substantially pure hPDGF-R polypeptide fragment of at least about twenty amino acids having platelet-derived growth factor (PDGF) binding activity or tyrosine kinase activity. Typically, the polypeptide fragment will be soluble.
In other embodiments, hPDGF-R fragments are provided having hPDGF-R binding activity consisting essentially of amino acids beginning at about 1 and ending at about 499 of a type B hPDGF-R, e.g., derived from Table 2, or consisting essentially of amino acids beginning about 1 and ending at about 501 of a type A hPDGF-R, e.g., derived from Table 3. The invention embraces compositions having an unglycosylated hPDGF-R fragment, preferably where the fragment is substantially pure. In other embodiments, the hPDGF-R fragment exhibits a glycosylation pattern which is non-fungal and non-human. Particularly useful compositions have a hPDGF-R polypeptide fragment which is essentially the extracellular region of a type B or a type A hPDGF-R, e.g., derived from sequences of Table 2 or Table 3. An additional embodiment is a composition comprising a combination of: (a) a recombinant nucleic acid encoding a human platelet-derived growth factor receptor polypeptide (hPDGF-R) fragment; and (b) a non-fungal glycosylation enzyme capable of glycosylating said fragment when expressed.
The present invention provides various methods for introducing a hPDGF-R activity to a cell, comprising the step of introducing a hPDGF-R protein fragment of at least about five hundred daltons to a cell. A method for assaying the presence of a ligand for a PDGF receptor in a sample is also provided, comprising the steps of: (a) combining the sample with a hPDGF receptor ligand

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human platelet-derived growth factor receptors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human platelet-derived growth factor receptors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human platelet-derived growth factor receptors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2912633

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.