Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
2001-06-08
2002-10-15
Prouty, Rebecca E. (Department: 1652)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C536S023100, C536S023500, C435S183000, C435S194000
Reexamination Certificate
active
06465632
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with animal phosphatases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes that can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of physiological disorders, or otherwise contributing to the quality of life.
2. BACKGROUND OF THE INVENTION
Membrane proteins can act as, inter alia, ligand receptors, signal transducers, neuronal guidance proteins, cell adhesion proteins, cell surface markers, and can also possess enzymatic functions such as the phosphorylation of substrates (i.e., kinase activity). Phosphatases mediate dephosphorylation of a wide variety of proteins and compounds in the cell. Often working in conjunction with kinases, phosphatases are involved in a regulating a wide range of biochemical and physiological pathways. Given the physiological importance of phosphatases, they have been subject to significant scrutiny and are good drug targets.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal immunoglobulin super family cell surface proteins, proteins that play a role in neuronal guidance (e.g., nope, punc, unc, and neogenin), phosphatases, netrin receptors, DCC (deleted in colon cancer) including, but not limited to tyrosine phosphatases, and cell adhesion molecules as homologues and orthologs across a range of phyla and species.
The novel human polynucleotides described herein, encode open reading frames (ORFs) encoding proteins of 1,069, 380, 904, 1150, 985, 991, 302, 826, 1072, 907, 712, 624, 547, 793, and 628 amino acids in length (see SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 respectively).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPS, or portions thereof that compete with native NHPs, NHP peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described gene under the control of a strong promoter system). The present invention also includes both transgenic animals that express a NHP transgene, and NHP “knock-outs” (which can be conditional) that do not express a functional NHP. Knockout murine ES cells have been produced in a murine ortholog of the described NHPs.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP product activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human phosphatase proteins. SEQ ID NO:31 describes a NHP ORF and flanking sequences.
REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5723323 (1998-03-01), Kauffman et al.
patent: 5830721 (1998-11-01), Stemmer et al.
patent: 5837458 (1998-11-01), Minshull et al.
patent: 5869336 (1999-02-01), Meyer et al.
patent: 5939271 (1999-08-01), Tessier-Lavigne et al.
patent: 6020179 (2000-02-01), Goli
Bird et al, 1988, “Single-Chain Antigen-Binding Proteins”, Science 242:423-426.
Bitter et al, 1987, “Expression and Secretion Vectors for Yeast”, Methods in Enzymology 153:516-544.
Colbere-Garapin et al, 1981, “A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells”, J. Mol. Biol. 150:1-14.
Gautier et al, 1987, “&agr;-DNA IV:&agr;-anomeric and &bgr;-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding”, Nucleic Acids Research 15(16):6625-6641.
Greenspan et al, 1993, “Idiotypes: structure and immunogenicity”, FASEB Journal 7:437-444.
Huse et al, 1989, “Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda”, Science 246:1275-1281.
Huston et al, 1988, “Protein engeineering of antibody binding sites: Recovery of specific activity in an anti-diogoxin single-chain Fv analogue produced inEscherichia coil”, Proc. Natl. Acad. Sci. USA 85:5879-5883.
Inoue et al, 1987, “Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H”, FEBS Letters 215(2):327-330.
Inoue et al, 1987, “Synthesis and hybridization studies on two complementary nona(2'-O-methyl)ribonucleotides”, Nucleic Acids Research 15(15):6131-6149.
Inouye & Inouye, 1985, “Up-promoter mutations in the Ipp gene of Escherichia coil”, Nucleic Acids Research 13(9):3101-3110.
Janknecht et al, 1991, “Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus”, PNAS 88:8972-8976.
Kohler & Milstein, 1975, “Continuous cultures of fused cells secreting antibody of predefined specificity”, Nature 256:495-497.
Logan et al, 1984, “Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowy et al, 1980, “Isolation of Transforming DNA: Cloning the Hamster aprt Gene”, Cell 22:817-823.
Morrison et al, 1984, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. USA 81:6851-6855.
Mulligan & Berg, 1981, “Selection for animal cells that express theEscherichia coligene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Neuberger et al, 1984, “Recombinant antibodies possessing novel effector functions”, Nature 312:604-608.
Nisonoff, 1991, “Idiotypes: Concepts and Applications”, J. of Immunology 147:2429-2438.
O'Hare et al, 1981, “Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase”, Proc. Natl. Acad. Sci. USA 78(3):1527-1531.
Ruther et al, 1983, “Easy identification of cDNA clones”, EMBO Journal 2(10): 1791-1794.
Santerre et al, 1984, “Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells”, Gene 30:147-156.
Sarin et al, 1988, “Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates”, Proc. Natl. Acad. Sci. USA 85:7448-7451.
Smith et al, 1983, “Molecular Engineering of theAutographa californicaNuclear Polyhedrosis Virus Genome: Deletion Mutations within the Polyhedrin Gene”, J. Virol. 46(2):584-593.
Stein et al, 1988, “Physiochemical properties of phosphorothioate oligodeoxynucleotides”, Nucleic Acids Research 16(8):3209-3221.
Szybalska & Szybalski, 1962, “Genetics of Human Cell Lines, IV. DNA-Mediated Heritable Transformation of a Biochemical Trait”, Proc. Natl. Acad. Sci. USA 48:2026-2034.
Takeda et al, 1985, “Construction of chimaeric processed immunoglobulin genes containing mouse variable and human constant region sequences”, Nature 314:
Abuin Alejandro
Friedrich Glenn
Sands Arthur T.
Scoville John
Turner, Jr. C. Alexander
Lexicon Genetics Incorporated
Prouty Rebecca E.
LandOfFree
Human phosphatases and polynucleotides encoding the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human phosphatases and polynucleotides encoding the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human phosphatases and polynucleotides encoding the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986453