Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Patent
1994-04-20
1998-12-15
Ulm, John
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
435 691, 4357523, 4353201, C12N 1512, C12N 510
Patent
active
058498958
ABSTRACT:
In accordance with the present invention, there are provided nucleic acids encoding human NMDA receptor protein subunits and the proteins encoded thereby. The NMDA receptor subunits of the invention comprise components of NMDA receptors that have cation-selective channels and bind glutamate and NMDA. In one aspect of the invention, the nucleic acids encode NMDAR1 and NMDAR2 subunits of human NMDA receptors. In a preferred embodiment, the invention nucleic acids encode NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C and NMDAR2D subunits of human NMDA receptors. In addition to being useful for the production of NMDA receptor subunit proteins, these nucleic acids are also useful as probes, thus enabling those skilled in the art, without undue experimentation, to identify and isolate related human receptor subunits. Functional glutamate receptors can be assembled, in accordance with the present invention, from a plurality of one type of NMDA receptor subunit protein (homomeric) or from a mixture of two or more types of subunit proteins (heteromeric). In addition to disclosing novel NMDA receptor protein subunits, the present invention also comprises methods for using such receptor subunits to identify and characterize compounds which affect the function of such receptors, e.g., agonists, antagonists, and modulators of glutamate receptor function. The invention also comprises methods for determining whether unknown protein(s) are functional as NMDA receptor subunits.
REFERENCES:
patent: 4837148 (1989-06-01), Cregg
patent: 4855231 (1989-08-01), Stroman et al.
patent: 4882279 (1989-11-01), Cregg
patent: 4929555 (1990-05-01), Cregg et al.
patent: 5024939 (1991-06-01), Gorman
patent: 5202257 (1993-04-01), Heinemann et al.
patent: 5401629 (1995-03-01), Harpold et al.
patent: 5403484 (1995-04-01), Ladner et al.
patent: 5436128 (1995-07-01), Harpold et al.
Abbott, NMDA receptor cloned, Trends Pharmacol. Sci. 12:449 (1991).
Abbott, NMDA receptor subunit cloned, Trends Pharmacol. Sci. 12:334 (1991).
Abe et al., Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca.sup.2+ signal transduction, J. Biol. Chem. 267:13361-13368 (1992).
Albin et al., Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's Disease, N. Engl. J. Med. 322(18):1293-1298 (1990).
Bahouth et al., Immunological approaches for probing receptor structure and function, Trends Pharmacol. Sci. 12:338-343 (1991).
Barnard, Will the real NMDA receptor please stand up? Trends Pharmacol. Sci. 13:11-12 (1992).
Beal, Mechanisms of excitotoxicity in neurologic diseases, FASEB J. 6:3338-3344 (1992).
Ben-Ari et al., Protein kinase C modulation of NMDA currents: an important link for LTP induction, Trends Neurosci. 15:333-339 (1992).
Black et al., N-methyl-D-aspartate-or glutamate-mediated toxicity in cultured rat cortical rat cortical neurons is antagonized by FPL 15896AR, J. Neurochem. 65:2170-2177 (1995).
Bottaro et al, Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product, Science 251:802-804 (1991).
Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248 (1976).
Bristow et al., The glycine/NMDA receptor antagonist R-(+)-HA-966, blocks actvation of the mesolimbic dopaminergic system induced by phencyclidine and dizcilpine (MK-801) in rodents, Br. J. Pharmacol. 108:1156-1163 (1993).
Choi, Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage, Trends Neurosci. 11(10):465469 (1988).
Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron 1:623-634 (1988).
Ciba-Geigy, Unveils Research Agreement with SIBIA of U.S., The Wall Street Journal (Sep. 17, 1992).
Coyle et al., Oxidative stress, glutamate, and neurodegenerative disorders, Science 262:689-695 (1993).
Daggett et al., Cloning and functional characterization of three splice variants of the human NMDAR1 receptor, Biophys J., 36(2):447 (1994).
Dascal, The use of Xenopus oocytes for the study of ion channels, CRC Critical Reviews in Biochemistry 22(4)317-387 (1987).
Donnelly and Pallotta, Single-channel currents from diethylpyrocarbonate-modified NMDA receptors in cultured rat brain cortical neurons, J. Gen. Physol. 105:837-859 (1995).
Durand et al., Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C, Proc. Natl. Acad. Sci. USA 89:9359-9363 (1992).
Egebjerg et al., Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence, Proc. Natl. Acad. Sci. USA 91:10270-10274 (1994).
Felder et al., A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinisitol hydrolysis, J. Biol. Chem. 264:20356-20362 (1989).
Fisher and Aronson, Characterization of the cDNA and genomic sequence of a G protein .gamma. subunit (.gamma..sub.5), Mol. Cell. Biol. 12:1585 (1992).
Foldes et al., Cloning and sequence analysis of cDNAs encoding human hippocampus N-methyl-D-aspartate receptor subunits: Evidence for alternative splicing, Gene 131:293-298 (1993).
Gautam et al., A G protein gamma subunit shares homology with ras proteins, Science 244:971 (1989).
Gautam et al., G protein diversity is increased by associations with a variety of .gamma. subunits, Proc. Natl. Acad. Sci. USA 87:7973 (1990).
Gereau and Conn, Multiple presynaptic metabotropic glutamate receptors modulate excitory and inhibitory synaptic transmission in hippocampal area CA1, J. Neurosci 15(10):6879-6889 (1995).
Greenamyre et al., Synaptic localization of striatal NMDA, quisqualate and kainate receptors, Neurosci. Lttrs. 101:133-137 (1989).
Grimwood et al., Interactions between the glutamate and glycine recognition sites of the N-methyl-D-aspartate receptor from rat brain, as revealed from radioligand binding studies, J. Neurochem. 60(5):1729-1738 (1993).
Gubler et al., A simple and very efficient method for generating cDNA libraries, Gene 25:263-269 (1983).
Gunasekar et al., NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: Implication for cell death, J. Neurochem. 65:2016-2021 (1995).
Gundersen et al., Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes, Proc. R. Soc. London Ser. 221:127 (1984).
Hess et al., Cloning, functional expression, and pharmacological characterization of human NMDAR1/NMDAR2 heteromeric receptors, Biophys J., 36(2):446 (1994) (abstract and poster).
Hess et al., Biophysical properties of human NMDA receptors stably expressed in mammalian cells, Soc. Neurosci. Abst. 21:1-3 (1995).
Hoffman, NMDA receptor cloned--twice| Science 254:801-802 (1991).
Hollman et al., Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor, Neuron 10:943-954 (1993).
Hollman et al., Cloned glutamate receptors, Annu. Rev. Neurosci. 17:31-108 (1994).
Hurley et al., Isolation and characterization of a cDNA clone for the .delta. subunit of bovine retinal transducin, Proc. Natl. Acad. Sci. USA 81:6948 (1984).
Ishii et al., Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits, J. Biol. Chem. 268(4):2836-2843 (1993).
Ito et al., Chacterization of prostaglandin E.sub.2 -induced Ca.sup.2+ mobilization in single bovine adrenal chromaffin cells by digital image microscopy, J. Neurochem. 56:531-540 (1991).
Jones et al., Chacterization of the binding of radioligands to the N-methyl-D-aspartate, phencyclidine, and glycine receptors in buffy coat membranes, J. Pharmacol. Meth. 21:61 (1989).
Kantak et al., Effects of N-methyl-D-aspartate antagonists in rats discriminating different doses of cocaine: Comparisons with direct and indirect dopamine agonists, J. Pharmacol. Exper. Therap. 274:657-665 (1995).
Karp et al., Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor, J. Biol. Chem.
Daggett Lorrie P.
Lu Chin-Chun
Seidman Stephanie L.
SIBIA Neurosciences Inc.
Ulm John
LandOfFree
Human N-methyl-D-aspartate receptor subunits, nucleic acids enco does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human N-methyl-D-aspartate receptor subunits, nucleic acids enco, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human N-methyl-D-aspartate receptor subunits, nucleic acids enco will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1459270