Human kinesin protein HsKif6

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06492158

ABSTRACT:

FIELD OF THE INVENTION
The invention provides isolated nucleic acid and amino acid sequences of HsKif6, methods of detecting HsKif6 and screening for HsKif6 modulators using biologically active HsKif6, and kits for screening for HsKif6 modulators.
BACKGROUND OF THE INVENTION
The kinesin superfamily is an extended family of related microtubule motor proteins. It can be classified into at least 8 subfamilies based on primary amino acid sequence, domain structure, velocity of movement, and cellular function. This family is exemplified by “true” kinesin, which was first isolated from the axoplasm of squid, where it is believed to play a role in anterograde axonal transport of vesicles and organelles (see, e.g., Goldstein,
Annu. Rev. Genet
. 27:319-351 (1993)). Kinesin uses ATP to generate force and directional movement associated with microtubules.
Within this functional group of kinesins resides a group of kinesins from several organisms that share significant sequence homology, including mouse kinesin Kif6. See, Nakagawa et al. (1997) Proc. Natl. Acad. Sci. USA 94:9654-9659; and GenBank Accession Number AB001434, each of which is incorporated herein by reference for all purposes.
The discovery of a new kinesin motor protein which is the human ortholog of mouse kinesin Kif6, and the polynucleotides encoding it satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, neurological disorders, and disorders of vesicular transport.
SUMMARY OF THE INVENTION
The present invention is based on the discovery of a new human kinesin motor protein, HsKif6, the polynucleotide encoding HsKif6, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, neurological disorders, and disorders of vesicular transport.
In one aspect, the invention provides an isolated nucleic acid sequence encoding a kinesin superfamily motor protein, wherein the motor protein has the following properties: (i) the protein's activity includes microtubule stimulated ATPase activity; and (ii) the protein has a sequence that has greater than 70%, 80%, or 90% amino acid sequence identity to SEQ ID NO:2 as measured using a sequence comparison algorithm. In one embodiment, the protein further specifically binds to polyclonal antibodies raised against SEQ ID NO:2.
In one embodiment, the nucleic acid encodes HsKif6 or a fragment thereof. In another embodiment, the nucleic acid encodes SEQ ID NO:2. In another embodiment, the nucleic acid has a nucleotide sequence of SEQ ID NO: 1.
In one aspect, the nucleic acid comprises a sequence which encodes an amino acid sequence which has greater than 70% sequence identity with SEQ ID NO:2, preferably greater than 80%, more preferably greater than 90%, more preferably greater than 95% or, in another embodiment, has 98 to 100% sequence identity with SEQ ID NO:2.
In one embodiment, the nucleic acid comprises a sequence which has greater than 55 or 60% sequence identity with SEQ ID NO: 1, preferably greater than 70%, more preferably greater than 80%, more preferably greater than 90 or 95% or, in another embodiment, has 98 to 100% sequence identity with SEQ ID NO:1. In another embodiment provided herein, the nucleic acid hybridizes under stringent conditions to a nucleic acid having a sequence or complementary sequence of SEQ ID NO: 1.
In another aspect, the invention provides-an expression vector comprising a nucleic acid encoding a kinesin superfamily motor protein, wherein the motor protein has the following properties: (i) the protein's activity includes microtubule stimulated ATPase activity; and (ii) the protein has a sequence that has greater than 70, 80, or 90% amino acid sequence identity to SEQ ID NO:2 as measured using a sequence comparison algorithm. The invention further provides a host cell transfected with the vector.
In another aspect, the invention provides an isolated kinesin superfamily motor protein, wherein the protein has one or more of the properties described above. In one embodiment, the protein specifically binds to polyclonal antibodies generated against a motor domain, tail domain or other fragment of HsKif6. In another embodiment, the protein comprises an amino acid sequence of SEQ ID NO:2.
In one aspect, the protein provided herein comprises an amino acid sequence which has greater than 70% sequence identity with SEQ ID NO:2, preferably greater than 80%, more preferably greater than 90%, more preferably greater than 95% or, in another embodiment, has 98 to 100% sequence identity with SEQ ID NO:2.
The invention features a substantially purified polypeptide comprising the amino acid sequence of SEQ ID NO:2 or a fragment thereof and more particularly, the motor domain of the amino acid sequence of SEQ ID NO:2 or a fragment thereof.
In one embodiment, the present invention provides a method of identifying a candidate agent as a modulator of the activity of a target protein. The method comprises adding a candidate agent to a mixture comprising a target protein which directly or indirectly produces ADP or phosphate, under conditions that normally allow the production of ADP or phosphate. The method further comprises subjecting the mixture to a reaction that uses said ADP or phosphate as a substrate under conditions that normally allow the ADP or phosphate to be utilized and determining the level of activity of the reaction as a measure of the concentration of ADP or phosphate. A change in the level between the presence and absence of the candidate agent indicates a modulator of the target protein. The phrase “use ADP or phosphate” means that the ADP or phosphate are directly acted upon by detection reagents. In one case, the ADP, for example, can be hydrolyzed or can be phosphorylated. As another example, the phosphate can be added to another compound. As used herein, in each of these cases, ADP or phosphate is acting as a substrate.
Preferably, the target protein either directly or indirectly produces ADP or phosphate and comprises a motor domain. More preferably, the target protein comprises a kinesin superfamily motor protein as described above and most preferably, the target protein comprises HsKif6 or a fragment thereof.
Also provided are modulators of the target protein including agents for the treatment of cellular proliferation, including cancer, hyperplasias, restenosis, cardiac hypertrophy, immune disorders and inflammation. The agents and compositions provided herein can be used in variety of applications which include the formulation of sprays, powders, and other compositions. Also provided herein are methods of treating cellular proliferation disorders such as cancer, hyperplasias, restenosis, cardiac hypertrophy, immune disorders and inflammation, for treating disorders associated with HsKif6 activity, and for inhibiting HsKif6.


REFERENCES:
Nakagawa, et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94(18), 9654-9659 “Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome”.
GenBank, Direct Submission, Accession No. AB001434, Must musculus mRNA for motor domain of Kif6 Sep. 19, 1997.
GenPept, Direct Submission, Accession No. BAA22394, Motor domain of Kif6 Sep. 19, 1997.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human kinesin protein HsKif6 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human kinesin protein HsKif6, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human kinesin protein HsKif6 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2950305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.