Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor
Reexamination Certificate
2001-12-20
2004-05-11
Monshipouri, Maryam (Department: 1652)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
Bacteria or actinomycetales; media therefor
C435S320100, C435S006120, C435S194000, C435S325000, C536S023200
Reexamination Certificate
active
06734009
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins sharing sequence similarity with animal kinases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or overexpress the disclosed genes, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed genes, which can be used for diagnosis, drug screening, clinical trial monitoring, the treatment of diseases and disorders, and cosmetic or nutriceutical applications.
2. BACKGROUND OF THE INVENTION
Kinases mediate the phosphorylation of a wide variety of proteins and compounds in the cell. Along with phosphatases, kinases are involved in a range of regulatory pathways. Given the physiological importance of kinases, they have been subject to intense scrutiny and are proven drug targets.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with animal kinases, including, but not limited to, serine-threonine kinases, and particularly Citron rho-interacting kinases. The described sequences describe a full length version of previously reported proteins that were erroneously presumed to be full length. Accordingly, the described NHPs encode novel kinases having homologues and orthologs across a range of phyla and species.
The novel human polynucleotides described herein, encode alternative open reading frames (ORFs) encoding proteins of 2054 and 1958 amino acids in length (see respectively SEQ ID NOS: 2 and 4).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and open reading frame or regulatory sequence replacement constructs) or to enhance the expression of the described NHPs (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a NHP sequence, or “knock-out” (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in several ways, one of which involves the use of mouse embryonic stem cells (“ES cells”) lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-4 are “knocked-out”) they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. In addition, animals in which the unique NHP sequences described in SEQ ID NOS:1-4 are “knocked-out” provide a unique source in which to elicit antibodies to homologous and orthologous proteins which would have been previously viewed by the immune system as “self” and therefore would have failed to elicit significant antibody responses. To these ends, gene trapped knockout ES cells have been generated in murine homologs of the described NHPs.
Additionally, the unique NHP sequences described in SEQ ID NOS:1-4 are useful for the identification of protein coding sequence and mapping a unique gene to a particular chromosome. These sequences identify actual, biologically verified, and therefore relevant, exon splice junctions as opposed to those that may have been bioinformatically predicted from genomic sequence alone. The sequences of the present invention are also useful as additional DNA markers for restriction fragment length polymorphism (RFLP) analysis, and in forensic biology.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequence of the novel human ORFs encoding the described novel human kinase proteins.
REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4594595 (1986-06-01), Struckman
patent: 4631211 (1986-12-01), Houghten
patent: 4689405 (1987-08-01), Frank et al.
patent: 4713326 (1987-12-01), Dattagupta et al.
patent: 4873191 (1989-10-01), Wagner et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5252743 (1993-10-01), Barrett et al.
patent: 5272057 (1993-12-01), Smulson et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5700637 (1997-12-01), Southern
patent: 5723323 (1998-03-01), Kauffman et al.
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5830721 (1998-11-01), Stemmer et al.
patent: 5837458 (1998-11-01), Minshull et al.
patent: 5869336 (1999-02-01), Meyer et al.
patent: 5877397 (1999-03-01), Lonberg et al.
patent: 5948767 (1999-09-01), Scheule et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 6110490 (2000-08-01), Thierry
patent: 6117679 (2000-09-01), Stemmer
patent: 6150584 (2000-11-01), Kucherlapati et al.
patent: WO 99/25843 (1999-05-01), None
patent: WO 01/38503 (2001-05-01), None
Database EMBL_HTG ‘Online’ “Homo sapienschromosome 12 clone RP11-184J5,” Mar. 23, 2000, database accession No. AC026363, XP002220103, Mar. 23, 2000.
Nagase et al., “Prediction of the coding sequence of unidentified human genes. XIII. The complete sequence of 100 new cDNA clones from brain which code for large proteins in vitro,” DNA Research, Universal Academy Press, JP, vol. 6, 1999, pp. 63-70, XP000952912, ISSN: 1340-2838.
Di Cunto, et al., “Citron Rho-interacting kinase, a novel tissue-specific Ser/Thr kinase encompassing the Rho-Rac-binding protein citron,” Journal of Biological Chemistry, vol. 273, No. 45, Nov. 6, 1998, pp. 29706-29711, XP002170360, ISSN: 0021-9258.
International Search Report, International Application No. PCT/US01/50497, Dec. 20, 2001.
Logan et al, 1984, “Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowy et al, 1980, “Isolation of Transforming DNA: Cloning the Hamster aprt Gene”, Cell 22:817-823.
Morrison et al, 1984, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. USA 81:6851-6855.
Mulligan & Berg, 1981, “Selection for animal cells that express theEscherichia coligene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Neuberger et al, 1984, “Recombinant antibodies possessing novel effector functions”, Nature 312:604-608.
Nisonoff, 1991, “Idiotypes: Concepts and Applications”, J. of Immunology 147:2429-2438.
O'Hare et al, 1981, “Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase”, Proc. Natl. Acad. Sci. USA 78(3):1527-1531.
Ruther et al, 1983, “Easy identification of cDNA clones”, EMBO Journal 2(10):1791-1794.
Santerre et al, 1984, “Expression of prokaryotic genes for hygromycin B and G418 resistance as dominant-selection markers in mouse L cells”, Gene 30:147-156.
Sarin et al, 1988, “Inhibition of acquired immunodeficiency syndrome virus by
Friddle Carl Johan
Miranda Maricar
Yu Xuanchuan (Sean)
Lexicon Genetics Incorporated
Monshipouri Maryam
LandOfFree
Human kinases and polynucleotides encoding the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human kinases and polynucleotides encoding the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human kinases and polynucleotides encoding the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238584