Chemistry: molecular biology and microbiology – Vector – per se
Reexamination Certificate
2001-04-03
2004-07-27
Pak, Michael (Department: 1646)
Chemistry: molecular biology and microbiology
Vector, per se
C435S325000, C536S023500
Reexamination Certificate
active
06767736
ABSTRACT:
INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding a protein that shares sequence similarity with mammalian ion channel proteins. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotides, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, or the treatment of diseases and disorders.
BACKGROUND OF THE INVENTION
Ion channel proteins are integral membrane proteins that mediate or facilitate the passage of materials across the lipid bilayer. Given that ion transport has been identified as an important regulator of mammalian physiology, ion channel proteins are proven drug targets.
SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode a novel human protein, and the corresponding amino acid sequence of this protein. The novel human protein (NHP) described for the first time herein shares structural similarity with mammalian ion channel proteins, and particularly voltage-gated potassium channel proteins.
The novel human nucleic acid sequences described herein, encode a protein/open reading frame (ORF) of 923 amino acids in length (SEQ ID NO: 2).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or “knock-outs” (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in several ways, one of which involves the use of mouse embryonic stem cells (“ES cells”) lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-3 are “knocked-out” they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. Additionally, the unique NHP sequences described in SEQ ID NOS:1-3 are useful for the identification of coding sequence and the mapping a unique gene to a particular chromosome.
DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequence of the described NHP ORF that encodes the described NHP amino acid sequence. SEQ ID NO:3 describes a NHP ORF as well as flanking 5′ and 3′ sequences.
REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4594595 (1986-06-01), Struckman
patent: 4631211 (1986-12-01), Houghton
patent: 4689405 (1987-08-01), Frank et al.
patent: 4713326 (1987-12-01), Dattagupta et al.
patent: 4873191 (1989-10-01), Wagner et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5252743 (1993-10-01), Barrett et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5700637 (1997-12-01), Southern
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5830721 (1998-11-01), Stemmer et al.
patent: 5837458 (1998-11-01), Minshull et al.
patent: 5869336 (1999-02-01), Meyer et al.
patent: 5877397 (1999-03-01), Lonberg et al.
patent: 5948767 (1999-09-01), Scheule et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 6110490 (2000-08-01), Thierry
patent: 6150584 (2000-11-01), Kucherlapati et al.
patent: 6403360 (2002-06-01), Blanar et al.
patent: WO 00 61606 (2000-10-01), None
patent: WO 00 77035 (2000-12-01), None
Shroeder B C et al, 2000, “KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents”, Journal of Biological Chemistyr, American Society of Biological Chemists, Baltimore, MD, US 275(31):24089-24095, XP002169158.
Lerche C et al, 2000, “Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity”, Journal of Biological Chemistry, American Society of Biological Chemists, Baltimore, MD, US 275(29)22395-224000, XP002169157.
Kubisch Christian et al, 1999, “KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness.”, Cell 96(3):437-446, XP002173745.
Database EMBL 'Online! AW049888 (mus musculus EST), Mar. 4, 2000, XP002173772.
Bird et al, 1988, “Single-Chain Antigen-Binding Proteins”, Science 242:423-426.
Bitter et al, 1997, “Expression and Secretion Vectors for Yeast”, Methods in Enzymology 153:516-544.
Colbere-Garapin et al, 1981, “A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells”,. J. Mol. Biol. 150:1-14.
Gautier et al, 1987, “&agr;-DNA IV; &agr;-anomeric and &bgr;-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding”, Nucleic Acids Research 15(16):6625-6641.
Gordon, 1989, “International Review of Cytology”, 115:171-229.
Grenspan et al, 1993, “Idiotypes: structure and immunogenicity”, FASEB Journal 7:437-444.
Gu et al, 1994, “Deletion of a DNA Polymerase &bgr; Gene Segment in T Cells Using Cell Type-Specific Gene Targeting”, Science 265:103-106.
Huse et al, 1989, “Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda”, Science 246:1275-1281.
Huston et al, 1988, “Protein engineering of antibody binding sites: Recovery of Specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli”, Proc. Natl. Acad. Sci. USA 85:5879-5883.
Inoue et al, 1987, “Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H”, FEBS Letters 215(2):327-330.
Inoue et al, 1987, “Synthesis and hybridization studies on two complementary nona(2′-O-mathyl)ribonucleotides”, Nucleic Acids Research 15(15):6131-6149.
Inouye & Inouye, 1985, “Up-promoter mutations in the Ipp gene ofEscherichia coli”, Nucleic Acids Research 13(9):3101-3110.
Janknecht et al, 1991, “Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus”, PNAS 88:8972-8976.
Kohler & Milstein, 1975, “Continuous cultures of fused cells secreting antibody of predefined specficity”, Nature 256:495-497.
Lakso et al, 1992, “Targeted oncogene activation by site-specific recombination in transgenic mice”, proc. Natl. Acad. Sci. USA 89:6232-6236.
Lavitrano et al, 1989, “Sperm Cells ad Vectors for Indrocuding Foreign DNA into Eggs: Genetic Transformation of Mice”, Cell 57:717-723.
Lo, 1983, “Transformation by Iontophoretic Microinjection of DNA: Multiple Integrations without Tandem Insertions”, Mol. 8, Cell, Biology 3(10):1803-1814.
Logan et al, 1984, “Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowry et al, 1980, “Isolation of Transforming DNA: Cloning the Hamster aprt Gene”, Cell 22:817-823.
Morrison et al, 1984, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. USA 81:6851-6855.
Mulligan & Berg, 1981, “Selection for animal cells that express theEschericia coligene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Neu
Friedrich Glenn
Hu Yi
Kieke James Alvin
Nehls Michael C.
Sands Arthur T.
Lexicon Genetics Incorporated
Pak Michael
LandOfFree
Human ion channel protein and polynucleotides encoding the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human ion channel protein and polynucleotides encoding the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human ion channel protein and polynucleotides encoding the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3229433