Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase
Reexamination Certificate
2001-02-28
2002-02-19
Patterson, Jr., Charles L. (Department: 1652)
Chemistry: molecular biology and microbiology
Enzyme , proenzyme; compositions thereof; process for...
Hydrolase
C424S094600, C536S023200
Reexamination Certificate
active
06348343
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related to results obtained from research on human deoxyribonuclease I (DNase I), a phosphodiesterase that is capable of hydrolyzing polydeoxyribonucleic acid. It relates generally to modified (variant) forms of human DNase I and their preparation by recombinant DNA methods, to pharmaceutical compositions by which their utility can be exploited clinically, and to methods of using these DNase I variants and compositions thereof.
BACKGROUND OF THE INVENTION
DNase I is a phosphodiesterase capable of hydrolyzing polydeoxyribonucleic acid. DNase I has been purified from various species to various degrees.
Bovine DNase I has been extensively studied biochemically. See e.g., Moore, in
The Enzvmes
(Boyer, P. D., ed), pp. 281-296, Academic press, New York (1981). The complete amino acid sequence for bovine DNase I is known (Liao, et al., J. Biol. Chem. 248:1489-1495 (1973); Oefner, et al., J. Mol. Biol. 192:605-632 (1986); Lahm, et al., J. Mol. Biol. 221:645-667 (1991)), and DNA encoding bovine DNase I has been cloned and expressed (Worrall, et al., J. Biol. Chem 265:21889-21895 (1990)). The structure of bovine DNase I has been determined by X-ray crystallography. Suck, et al., EMBO J. 3:2423-2430 (1984); Suck, et al., Nature 321:620-625 (1986); Oefner, et al., J. Mol. Biol. 192:605-632 (1986).
DNA encoding human DNase I has been isolated and sequenced and that DNA has been expressed in recombinant host cells, thereby enabling the production of human DNase I in commercially useful quantities. Shak, et al., Proc. Nat. Acad. Sci. 87:9188-9192 (1990).
DNase I has a number of known utilities and has been used for therapeutic purposes. Its principal therapeutic use has been to reduce the viscoelasticity of pulmonary secretions (mucus) in such diseases as pneumonia and cystic fibrosis (CF), thereby aiding in the clearing of respiratory airways. See e.g., Lourenco, et al., Arch. Intern. Med. 142:2299-2308 (1982); Shak, et al., Proc. Nat. Acad. Sci. 87:9188-9192 (1990); Hubbard, et al., New Engl. J. Med. 326:812-815 (1992); Fuchs, et al., New Engl. J. Med. 331:637-642 (1994); Bryson, et al., Drugs 48:894-906 (1994). Mucus also contributes to the morbidity of chronic bronchitis, asthmatic bronchitis, bronchiectasis, emphysema, acute and chronic sinusitis, and even the common cold.
The pulmonary secretions of persons having such diseases are complex materials, that include mucus glycoproteins, mucopolysaccharides, proteases, actin, and DNA. Some of the materials in pulmonary secretions are released from leukocytes (neutrophils) that infiltrate pulmonary tissue in response to the presence of microbes (e.g., strains of Pseudomonas, Pneumococcus, or Staphylococcus bacteria) or other irritants (e.g., tobacco smoke, pollen). In the course of reacting with such microbes or irritants, the leukocytes may degenerate and release their contents, which contribute to the viscoelasticity of the pulmonary secretions.
The ability of DNase I to reduce the viscoelasticity of pulmonary secretions has been ascribed to its enzymatic degradation of the large amounts of DNA released by neutrophils. Shak, et al., Proc. Nat. Acad. Sci. 87:9188-9192 (1990); Aitken, et al., J. Am. Med. Assoc. 267:1947-1951 (1992).
More recently, a different mechanism has been proposed for the mucolytic effect of DNase I, involving disaggregation of actin. Vasconcellos, et al., Science 263:969-971 (1994). Actin is one of the most abundant proteins in eukaryotic cells (for example, actin comprises about 10% of total leukocyte protein) and has been extensively studied. Kabsch, et al., Ann. Rev. Biophys. Biomol. Struct. 21:49-76 (1992); Sheterline, et al., Prot. Profile 1:1-121 (1994). Actin exists in two forms, a monomeric form (G-actin), and a filamentous form (F-actin) that is assembled from G-actin monomers. Polymeric filaments of actin are highly viscoelastic and contribute significantly to the viscosity of pulmonary secretions. Mornet, et al., Proc. Nat. Acad. Sci. 81:3680-3684 (1984); Newman, et al., Biochemistry 24:1538-1544 (1985); Janmey, et al., Biochemistry 27:8218-8226 (1988); Vasconcellos, et al., Science 263:969-971 (1994).
Because DNase I is known to bind to actin (Lazarides, et al., Proc. Nat. Acad. Sci. 71:4742-4746 (1974); Kabsch, et al., Nature 347:37-44 (1990)) and to depolymerize actin filaments (as well as inhibit polymerization of G-actin into filaments) (Mannherz, et al., FEBS Lett. 60:34-38 (1975); Hitchcock, et al., Cell 7:531-542 (1976); Pinder, et al., Biochemistry 21:4886-4890 (1982); Weber, et al., Biochemistry 33:4780-4786 (1994)), it has been suggested that the mucolytic effect of DNase I on sputum and other pulmonary secretions is due to actin disaggregation (depolymerization) rather than to DNA hydrolysis. Vasconcellos, et al., Science 263:969-971 (1994). Consistent with this view, it is known that in the presence of actin, the DNA-hydrolytic activity of DNase I is inhibited. Lazarides, et al., Proc. Nat. Acad. Sci. 71:4742-4746 (1974); Mannherz, et al., Eur. J. Biochem. 104:367-379 (1980). Also consistent with this view, it has been reported that actin severing proteins (e.g., gelsolin) are effective in decreasing the viscoelasticity of cystic fibrosis sputum. Vasconcellos, et al., Science 263:969-971 (1994); Stossel, et al., PCT Patent Publication No. WO 94/22465 (published Oct. 13, 1994).
The present invention is based in part on research by the inventors to determine the biochemical basis of the mucolytic activity of DNase I. This research involved the design and synthesis of various human DNase I variants, and the assay of these variants to assess their ability to hydrolyze DNA, to bind to actin, and to reduce the viscoelasticity of sputum in vitro. The inventors created several classes of human DNase I variants. One class of variants (actin-resistant variants) has decreased ability to bind actin, but still has mucolytic activity and in some cases had increased mucolytic activity as compared to native human DNase I. These actin-resistant variants have about the same DNA-hydrolytic activity as native human DNase I, but such activity is less susceptible to inhibition by actin. A second class of variants bind actin with an affinity similar to that found for native human DNase I, but have decreased mucolytic activity and decreased DNA-hydrolytic activity as compared to native human DNase I.
These results indicate that the therapeutic efficacy of human DNase I in reducing the viscoelasticity of pulmonary secretions is due to its catalytic, DNA-hydrolytic activity, rather than to its ability to depolymerize filamentous actin. Accordingly, variants of human DNase I that bind actin with lower affinity than native human DNase I, but that still possess DNA-hydrolytic activity should be useful therapeutic agents, especially in the treatment of patients having pulmonary secretions that comprise relatively large amounts of actin. Because such variants have reduced affinity for actin, their DNA hydrolytic activity is less inhibited in the presence of actin, and so these variants have greater mucolytic activity in the presence of actin, as compared to native human DNase I.
It is therefore an object of the present invention to provide human DNase I variants that possess DNA-hydrolytic activity, but bind actin with lower affinity than native human DNase I.
It is another object of the invention to provide nucleic acids encoding such actin-resistant variants of human DNase I, recombinant vectors comprising such nucleic acids, recombinant host cells transformed with those nucleic acids or vectors, and processes for producing the human DNase I variants by means of recombinant DNA technology.
The invention also is directed to pharmaceutical compositions comprising the human DNase I actin-resistant variants, optionally together with a pharmaceutically acceptable excipient.
The invention also is directed to a method for reducing the viscoelasticity or viscous consistency of DNA-containing material in a patient, comprising administering a therapeutically effective dose of an ac
Lazarus Robert A.
Shak Steven
Ulmer Jana S.
Evans David W.
Genentech Inc.
Patterson Jr. Charles L.
LandOfFree
Human DNase I variants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human DNase I variants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human DNase I variants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2955560