Human cell-lines

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Primate cell – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S366000, C435S375000, C435S440000, C435S455000, C435S467000, C536S023100, C536S023700, C536S023720

Reexamination Certificate

active

06197585

ABSTRACT:

The invention relates to a method for producing human cell-lines; and cells and cell-lines when produced by such a method.
It is widely acknowledged that it would be advantageous to have in vitro cell models that simulate in vivo conditions. Ideally, the cell models should be able to propagate in culture, express specialised tissue functions and allow fundamental biological problems to be answered by a simple manipulation of the culture conditions. It is therefore not surprising to discover that researchers have spent many years trying to perfect in vitro cell models and in doing so they have discovered that normal differentiated cells generally do not proliferate in culture and often cease to express their specialised function. Indeed as far ago as 1965 Leonard Hayflick reported that when human lung fibroblast are observed in tissue culture the number of divisions these cells can undergo is limited. Similar observations have been made for a wide variety of tissue types and indeed it has been discovered that each type of tissue or cell undergoes a characteristic number of divisions before cell senescence or apoptosis. In order to circumvent what would seem to be age-related cellular death or senescence, researchers have investigated aberrant tumour cell-lines that are capable of growth in culture well beyond the normal level of growth encountered for a normal cell of the same tissue type, that is to say the cells are immortalised. Advantageously, these immortalised cells may retain the ability to express tissue-specific functions. It would therefore seem that immortalised cells may be favourable tools for in vitro investigations.
Indeed, historically the generation of cell-lines was founded on the observation that tumour cells do not exhibit apoptosis. Thus early cell-lines were obtained only as tumour cells or spontaneously immortalised variants of cells which grew readily in tissue culture. Subsequently, the discovery that certain viral oncogenes had the capacity to confer indefinite growth upon various normal cell types led to the rapid generation of non-human cell-lines by transfection of these immortalising genes directly into desired normal cell types in vitro. Immortalising genes can be introduced into cells by a variety of strategies such as transfection and retroviral mediated gene insertions. Thus the use of irnmortalising genes has facilitated the provision of a wide variety of non-human cell-lines from different tissues.
Over the past fifteen years it has been possible to produce non-human cell-lines retaining differentiated functions by transforming normal cells with chemical carcinogens (1), oncogenes (3), and tumour viruses (4,5). Workers have also attempted to produce human cell-lines retaining differentiated functions using oncogenes (2) and tumour viruses (6). However, although it is possible to produce human cell-lines that have retained some differentiated functions these human cell-lines do not go beyond a few replications before apoptosis or senescence. It therefore follows that such cell-lines are of little value for in vitro investigations.
In view of the considerable success experienced in producing non-human cell-lines it is both puzzling and frustrating that, so far, it has not been possible to use the same techniques to produce successfully human cell-lines, by the term successfully we mean immortalised cell-lines which retain their tissue specific characteristics. It will be apparent, that in the absence of immortalization and tissue specific characteristics cell-lines generated cannot be used as reliable in vitro cell models.
It is interesting to note that the production of immortalised murine cell-lines can be provided using any of the above techniques, whereas it is not possible to provide immortalised human cell-lines. The difference may, in part, be related to the life expectancy of the organism from which the cells derive. For example, the life expectancy of a mouse is approximately 2 years whereas the life expectancy of a human is approximately 70-80 years and therefore it is possible that because of this significant difference in life expectancy there may be more stringent regulation of human cell replication and this stringent regulation may, in part, be responsible for the profound general lack of success in producing differentiated human cell-lines.
Our invention is based on a surprising discovery, we have found that, contrary to expectations, it is possible to produce an imnmortalised human cell-line which expresses tissue specific functions when the method of the invention is practised, which method involves the use of immature, undifferentiated or precursor cells. Although such cells have been used before to study differentiation—no one has before realised that such cells can be used routinely to provide immortalised human cell-lines that express the tissue specific functions seen in the mature differentiated phenotype.
It is therefore important to note that although undifferentiated cells have been used to provide cell-lines for the purpose of studying the differentiation process where one would expect to start with an undifferentiated cell if one wanted to study the process leading to differentiation, no-one has thought to use undifferentiated cells as a source for providing a cell-line when one simply wants to study the differentiated cell. Rather, it is customary to take a differentiated cell and then immortalise the differentiated cell with a view to producing a human cell-line. It is therefore interesting to note that the method of the invention goes against conventional teaching.
It is also interesting to note that when undifferentiated cells are used to produce human cell-lines for the purpose of studying the process of differentiation and when a controllable immortalising agent has been used such as the SV40 large-tumour T antigen the method has always involved the switching on and off of the immortalising agent at preselected intervals along the differentiation pathway so that at these predetermined intervals the products of differentiation can be identified with a view to establishing markers for mapping the differentiation pathway. In contrast, the method of the invention concerns the use of an undifferentiated cell which is allowed to progress continuously towards terminal differentiation with a view to investigating the differentiated cell therefore, once again, it can be seen that the method of the invention goes against conventional teaching.
It can therefore be seen that there is a need to provide immortalised human cell-lines which can be used as in vitro cell models and it is therefore an object of the invention to provide a method that produces such cell-lines; and cells and cell-lines when produced by such method.
According to a first aspect of the invention there is therefore provided a method for producing human cell-lines, the method comprising;
a) immortalising a human undifferentiated or precursor cell of a given tissue type using an immortalising agent which includes or has associated therewith a control means whereby activation of the control means terminates immortalisation and allows differentiation of the undifferentiated or precursor cell,
b) culturing said immortalised cell in order to produce a homogenous population of human cells,
c) activating the control means in order to terminate imnmortalisation and activate differentiation, and
d) allowing differentiation of said cells so as to produce fully differentiated cells of said given tissue type.
It can be seen from the above that the method is characterised by the use of undifferentiated or precursor cells in order to produce a desired fully differentiated human cell-line. It follows that the choice of the undifferentiated or precursor cell will determine the nature of the cell-line. Thus for example, an osteoblast cell-line will be provided by the use of bone marrow stromal cells; an osteoclast cell-line will be provided by the use of haemapoietically derived osteoclast precursors, a heart cell-line will be produced by the use of myocardial precurso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human cell-lines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human cell-lines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human cell-lines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2459269

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.