Human antibodies derived from immunized xenomice

Multicellular living organisms and unmodified parts thereof and – Nonhuman animal – Transgenic nonhuman animal

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

800 6, 800 25, 424 9321, A61K 4800, C12N 510, C12N 1507

Patent

active

061505846

ABSTRACT:
Fully human antibodies against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.

REFERENCES:
patent: 4950599 (1990-08-01), Bertling
patent: 4959313 (1990-09-01), Taketo
patent: 5204244 (1993-04-01), Fell et al.
patent: 5545806 (1996-08-01), Lonberg et al.
patent: 5545807 (1996-08-01), Surani et al.
patent: 5569825 (1996-10-01), Lonberg et al.
Patent Abstracts of Japan, vol. 13, No. 186 (E-752) (3534), May 2, 1989 Japanese Application 63-11 1378 (Hitachi).
Patent Abstracts of Japan, vol. 13, No. 254 (E-772) (3602), Jun. 13, 1989 Japanese Appln. 63-151680 (Sumitomo Electric).
Japanese Patent Abstract of Japan, vol. 6, No. 95(E-110) (973), Jun. 3, 1982, Japanese Appln. 57-27079 (Nippon Denshin).
Wu et al., "High Temperature Processing of Cuprate Oxide Superconductors" Applied Physics Letters, vol. 52, No. 22, May 30, 1988.
Patent Abstracts of Japan, vol. 13, No. 144 (E-740) (3492), Apr. 10, 1989 Japanese Appliction 63-306676 (Matsushita Electric).
Albertson, et al., "Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents," Proc. Natl. Acad. Sci. U.S.A. 87:4256-4260 (1990).
Ayares, et al., "Sequence homology requirements for intermolecular recombination in mammalian cells," Proc. Natl. Acad. Sci. U.S.A. 83:5199-5203 (1986).
Berman, et al., "Content and organization of the human Ig V.sub.h locus: definition of three new V.sub.h families and linkage to the Ig C.sub.h locus" EMBO J 7:727-738 (1988).
Blankenstein, et al., "Immunoglobulin V.sub.h region genes of the mouse are organized in overlapping clusters" Eur. J. Immunol. 17:1351-1357 (1987).
Brinster, et al., "Introns increase transcriptional efficiency in transgenic mice," Proc. Natl. Acad. Sci. U.S.A. 85:836-840 (1988).
Brownstein, et al., "Isolation of single-copy human genes from a library of yeast artificial chromosomes", Science 244:1348-1351 (1989).
Bruggemann, et al., "Construction, function and immunogenicity of recombinant monoclonal antibodies," Behring Inst. Mitt. 87:21-24 (1990).
Bruggemann, et al., "Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus," Eur. J. Immunolog. 21:1323-1326 (1991).
Bruggemann, et al., "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice," Proc. Natl. Acad. Sci. U.S.A. 86:6709-6713 (1989).
Burke, et al., "Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors," Science 236:806-812 (1987).
Buttin, et al., "Exogenous Ig rearrangement in transgenic mice: a new strategy for human monoclonal antibody production," Trends in Genetics 3(8):205-206 (1987).
Davies, et al., 1992, "Targeted alterations in yeast artificial chromosomes for inter-species gene transfer," Nucleic Acids Res. 20:2693-2698 (1992).
Dorfman, N.A. "The optimal technological approach to the development of human hybridomas," Journal of Biological Response Modifiers 4:213-239 (1986).
Eliceiri, et al., "Stable integration and expression in mouse cells of yeast artificial chromosomes harboring human genes," Proc. Natl. Acad. Sci. U.S.A. 88:2179-2183 (1991).
Garza, et al., "Mapping the drosophila genome with yeast artificial chromosomes with yeast artificial chromosomes", Science 246:641-646 (1989).
Gnirke, et al., "Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes", EMBO Journal 10(7):1629-16-14 (1991).
Huxley, et al., "The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion," Genomics 9:742-750 (1991).
Joyner, et al., "Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells," Nature 338:153-155 (1989).
Koller, et al., "Inactivating the .beta.2-microglobulin locus in mouse embryonic stem cells by homologous recombination" Proc. Nat'l Acad. Sci. 86:8932-8935 (1989).
Kucherlapati, R., "Homologous recombination in mammalian somatic cells," Prog. Nucleic Acid Res. Mol. Biol. 36:301-310 (1989).
Matsuda, et al., "Structure and physical map of 64 variable segments in the 3'0.8-megabase region of the human immunoglobulin heavy chain locus," Nature Genetics 3:88-94 (1993).
Mortensen, et al., "Production of homozygous mutant ES cells with a single targeting construct," Mol. Cell. Biol. 12(5):2391-2395 (1991).
Pachnis, et al., "Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells," Proc. Natl. Acad. Sci. U.S.A. 87:5109-5113 (1990).
Pavan, et al., "Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome," Mol. Cell. Biol. 10(8):4163-4169 (1990).
Sakano, et al., "Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy chain genes," Nature 290:562-565 (1981).
Shimizu, et al., "Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse," Proc. Natl. Acad. Sci. U.S.A. 86:8020-8023 (1989).
Shin, et al., "Physical map of the 3' region of the human immunoglobulin heavy chain locus: clustering of autoantibody-related variable segments in one haplotype," EMBO 10:3641-3645 (1991).
Taggart, et al., "Stable antibody-producing murine hybridomas," Science 219:1228-1230 (1983).
Thomas, et al., "Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells," Cell 51:503-512 (1987).
Traver, et al., "Rapid screening of a human genomic library in yeast artificial chromosomes for single-copy sequences," Proc. Natl. Acad. Sci. U.S.A. 86:5898-5902 (1989).
Tucker, et al., "Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge exons," Proc. Natl. Acad. Sci. U.S.A. 78:7684-7688 (1981).
Yamamura, et al., "Cell-type specific and regulated expression of a human yl heavy-chain immunoglobulin gene in transgenic mice", Proc. Natl. Acad. Sci. U.S.A. 83:2152-2156 (1986).
Yancoupoulos and Alt, Cell 40:271-281 (1985).
Zachau, The human immunoglobulin .kappa. locus and some of its acrobatics, Biol. Chem. 371: 1-6 (1990).
Aldhous, "Transgenic mice display a class (switching) act," Science 262:1212-1213 (1993).
Berman, et al., "Content and organization of the human Ig V.sub.H locus: definition of three new V.sub.H families and linkage to the Ig C.sub.H locus," EMBO Journal 7(3):727-738 (1988).
Bruggemann, et al., "A repertoire of monoclonal antibodies with human heavy chains from transgenic mice," Proc. Natl. Acad. Sci USA 86:6709-6713 (1989).
Choi, et al., "RNA splicing generates a variant light chain from an aberrantly rearranged K gene," Nature 286:776-779 (1980).
Choi, et al., "Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome," Nature Genetics 4:117-123 (1993).
Jakobovits, et al., "Germ-line transmission and expression of a human-derived yeast artificial chromosome," Nature 362:255-258 (1993).
Joyner, et al., "Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells," Nature 338:153-156 (1989).
Max, et al., "Sequences of five potential recombination sites encoded close to an immunoglobulin k constant region gene," Proc. Natl. Acad. Sci. USA 76(7):3450-3454 (1979).
Miller, et al., "Structural alterations in J regions of mouse immunoglobulin .lambda. genes are associated with differential gene expression," Nature 295:428-430 (1982).
Morrison, S. "Success is in the Specification," Nature, 369, pp. 812-813 (1994).
Orkin, et al., "Mutation in an intervening sequence splice junction in man," Proc. Natl. Acad. Sci. USA 78(8):5041-5045 (1981).
Rajewsky, et al., "Evolutionary and somatic selection of the antibody repertoire in the mouse," Science 238:1088-1094 (1987).
Ramirez-Solis, et al., "Chromosome engineering in mice," Nature 378:720-724 (1995).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human antibodies derived from immunized xenomice does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human antibodies derived from immunized xenomice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human antibodies derived from immunized xenomice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1259128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.