Liquid heaters and vaporizers – Water tube – Headers and connections
Reexamination Certificate
2002-09-26
2004-03-30
Wilson, Gregory (Department: 3749)
Liquid heaters and vaporizers
Water tube
Headers and connections
C122S511000, C237S00800C, C237S00800C
Reexamination Certificate
active
06712027
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of connectors and, in particular, to connectors for hot water heating systems and heating systems utilizing these connectors.
BACKGROUND OF THE INVENTION
Hot water heating systems are alternatives to other conventional heating systems such as forced hot air, steam, and electric elements. The typical hot water heating system includes a boiler for heating water, a flanged pump for moving the heated water, a flow control valve, and any number of isolation valves that allow the components to be isolated from a supply pipe that transfers the heated water to a flexible heating pipe, radiator or convector. In addition, other mechanical devices that control and direct hot water flow through the system include fittings such as, 90 degree elbows, tees, and adapters, as well as air scoops and vents, manifolds, nipples, purge fittings and valves, tempering valves, balance valves, expansion tanks, backflow preventers, pressure reducing valves, etc., may also be included
There are a number of current hot water heating systems utilizing the above mentioned components. One such heating system is a radiant floor heating system in which a flexible heating pipe is typically embedded throughout, or under, the floor of the room to be heated. Another is a hot water system utilizing radiators or convectors in which the hot water is fed to steel or copper fin tube baseboard, freestanding cast iron radiator units, or a fan convector coil. In each of these systems, once the hot water has flowed through the heating pipe, radiator or convector, the heated water continues through a return pipe back to the boiler for reheating, thus completing the loop.
One problem with current hot water systems is the time required to install them. Typically these piping systems use flanges, threaded fittings, black steel pipe, or sweat fit copper tubing, which is extremely labor intensive to install. Manufactured steel and copper piping or tubing come in straight runs and fittings for accommodating turns and curves. Each connector of a straight run with a fitting requires either a threaded or a sweat fitted solder connector and a substantial amount of installation labor is involved in making each joint.
In cases where threaded connectors are to be made, the pipe must be cut to the appropriate length, and then the threads must be cut on the end of the pipe using a pipe threading die. Next the threads must be dressed, cleaned and coated with a sealing compound, or a synthetic resinous fluorine tape, such as the product marketed by the duPont Corporation under the trademark TEFLON®, to prevent leaks. Finally, the connector must be screwed to the pipe end with sufficient thread contact to prevent leaks.
In the case of sweat fit solder joints, the labor is comparable in that the tubing must be cut to the proper length, the end of the tubing and the fitting must be dressed and fluxed and the joint must be heated to the proper temperature with a torch to effect a satisfactory solder joint. Once joined, the solder connection must then be cleaned of any residual flux that, if left un-cleaned, would corrode the joint once exposed to moisture.
In the case of flanged connections, such as those found on virtually all current circulators, the attachment is even more labor intensive. Circulator flanges are typically elliptical in shape and do not readily accommodate a standard pipe wrench or other tightening device. In addition, when the elliptical ends of the flange have turned within the 180 degrees tightening arc, the wrench must be readjusted, necessitating many fatiguing and time consuming iterations to complete the task. Moreover, as the size of a pipe wrench increases, the length of the handle increases proportionally. As pipe flanges must often be attached to a circulator that is extremely close to a wall, other pipes, or even worse, a corner, the use of a long handled pipe wrench or a pry-bar and long stove bolts to attach the flange to the pipe makes this job a tiring and time consuming one. Finally, once attached to the pipe, gaskets must be installed between the flanges and bolts secured to each flange to make the connections watertight. The inventor's pipe flange and sweat flange, described and claimed in U.S. patent application Ser. No. 09/179,584, and U.S. Pat. No. 6,283,157, respectively, ease this installation job somewhat. However, each still requires many of the same steps required for installing threaded or sweat copper connections, and each still requires the use of gaskets and bolts to secure the flanges to one another.
Another reason for the increase in installation cost is the fact that most systems are customized for the particular location in which they are to be installed. This requires that a variety of parts, having a variety of different connectors, be used to piece the system together. Further, careful attention must be paid to insure that all components are installed in the correct position relative to the flow direction of the heating water. Because of this, current systems must be installed by trained professionals who have the tools and the know-how to properly assemble such customized systems.
Finally, the replacement of failed components in current systems requires that pipes be cut, rusted bolts be removed, worn gaskets be replaced, etc. This, again, increases the complexity of the work to be performed and mandates that trained professionals undertake any repair work on current systems.
Therefore, there is a need for a hot water heating system that is easily adapted for a variety of applications, that employs fewer joints requiring sealing compounds, solder, gasketing materials, or expensive tools to install than conventional systems, that insures that all components are in the proper position relative to water flow direction, and that allows failed components to be quickly and easily replaced without the need for professional assistance.
SUMMARY OF THE INVENTION
The present invention is a hot water heating system, coupler and integrated flow system that overcome the drawbacks of traditional systems.
The system of the present invention utilizes male and female connectors for all main heating system components and, allows the system to be completely installed using no more than two ordinary wrenches. In its most basic form, the system of the present invention includes a first isolator valve, a flow control valve, a circulator and a second isolator valve. Each of these components is equipped with one male portion of a connector on one side of the component and one female portion of a connector on the other side of the component, such that, for example, all inflow sides utilize male portions of connectors and all outflow sides utilize female of connectors portions, or vice-versa. These union connectors are sized to allow the components to be quickly and easily attached together in the proper orientation relative to one another. Further, the systematic nature of the components, i.e. male on one side and female on the other side, prevents the inadvertent installation of any component in the wrong flow direction.
In some embodiments, fittings, nipples, pipe, and adapters may be required to assemble the components so that hot water may flow throughout the heating system. In addition, an expansion tank, backflow preventer, and pressure reducing valve may be required to maintain the desired pressure in the system at all times.
In embodiments of the system utilized with radiant manifolds and radiant heat emitters, the present invention also includes an air vent, a flow control valve, a tempering valve, and a tee connector with a temperature gauge or temperature-sending unit. Each of these components is equipped with union connectors arranged in the same manner, i.e. the male on inflow side/female on outflow side configuration, as described above.
In embodiments of the system utilized with hot water radiator type heating systems, the present invention includes an air scoop in addition to the first isolator valve, flow control valve, circu
Lawson & Persson P.C.
Persson Michael J.
Wilson Gregory
LandOfFree
Hot water heating system and connector for use therewith does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hot water heating system and connector for use therewith, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hot water heating system and connector for use therewith will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3264101