Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2000-06-22
2002-09-24
Medley, Margaret (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S271000, C524S274000, C524S474000, C524S485000, C524S486000, C524S490000, C524S484000, C524S491000, C525S098000, C525S099000
Reexamination Certificate
active
06455627
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to hot melt pressure sensitive positioning adhesives for use with absorbent articles which are based on blends of hydrogenated block copolymers of styrene and butadiene or isoprene and exhibit improved viscosity and viscosity/temperature profile.
BACKGROUND OF THE INVENTION
Positioning adhesives are used on disposable articles (absorbent articles) such as sanitary napkins, incontinent pads, bed pads, feminine pads, panty shields, diaper inserts, etc. where an adhesive layer is used to attach the article to a woven fabric substrate such as a supporting undergarment or bed sheet. The positioning adhesive is commonly applied to a release liner and transfer coated to the garment facing surface of the disposable article. The positioning adhesive must be capable of attaching to the undergarment to hold the article in place without transferring to or otherwise being deposited on the undergarment. Furthermore, the adhesive must not discolor, damage, or disturb the fibers of the garment.
The positioning adhesive must be a pressure sensitive adhesive that has an application viscosity that permits it to readily flow onto and partially penetrate the particular surface to which it is applied. It must have good bond strength and high tack for initial placement of the article on the undergarment but also must have the ability to avoid loss of adhesion over time due to temperature conditions. Finally, these articles are sometimes used for long periods of times at body temperature and they can have the drawback that the hot melt adhesive gradually softens and penetrates into the undergarment to which the article is adhering. In this case, the adhesive force greatly increases and the cohesive force is reduced. This causes the adhesive layer to suffer cohesion breakdown when the article is removed and some adhesive remains on the undergarment. Prevention of this deposit of adhesive on the undergarment is accordingly a necessary prerequisite for a successful positionable hot melt adhesive composition.
Block copolymers of styrene and dienes such as butadiene or isoprene have been used for a number of years in positionable hot melt adhesive formulations. More recently, the material of choice for such adhesives in feminine care applications has been hydrogenated block copolymers of styrene and butadiene such as KRATON® G1650 SEBS (hydrogenated styrene-butadiene-styrene) block copolymer. Formulations based on these SEBS block copolymers have been found to have excellent adhesion to fabrics like cotton and nylon and have the advantage that they leave no residue after peeling. The application viscosity of formulations using these polymers is acceptable but it would be advantageous to have a positionable adhesive formulation which has a lower viscosity in order to lower the application temperature. This reduces the risk of degradation, char forming, and filter plugging. This also results in energy and cost savings, decreases maintenance costs, and reduces the amount of odor due to the volatiles coming from the adhesive. The present invention provides such an improved positionable hot melt adhesive formulation.
SUMMARY OF THE INVENTION
The present invention is a hot melt pressure sensitive positioning adhesive for use with an absorbent article. The adhesive comprises:
(a) from 6 to less than 15 percent by weight, of the total of (a), (b) and (c) of a blend of
(i) from 40 to 95% by weight of a hydrogenated styrene-(butadiene and/or isoprene)-styrene block copolymer; and
(ii) from 5 to 60% by weight of a blend of a hydrogenated styrene-isoprene-styrene-isoprene block copolymer; and
(iii) from 0 to 40% by weight of an amorphous ethylene/propylene copolymer having a number average molecular weight of 9,000 to 30,000; and
(b) from 50 to 80 percent by weight, of the total of (a), (b) and (c), of a tackifying resin which has an aromaticity such that the MMAP cloud point is at least 45° C.; and
(c) from 5 to 35 percent by weight, of the total of (a), (b) and (c), of a plasticizer.
DETAILED DESCRIPTION OF THE INVENTION
One of the primary components of the positioning adhesive composition of the present invention is the above-described hydrogenated block copolymer that has two polystyrene endblocks and a saturated or hydrogenated polybutadiene and/or polyisoprene midblock. This conventional hydrogenated base block copolymer provides the primary load bearing capability of the adhesive composition. It is important that the polymer be hydrogenated so that the structural integrity of the polymer is preserved even if outside forces that cause degradation are encountered. The block copolymer may be hydrogenated as generally described in the prior art, preferably so as to reduce at least 90 percent of any olefinic double bonds in the polymer chains. Suitably at least 50 percent, preferably at least 70 percent, and more preferably at least 90 percent, most preferably at least 95 percent of the original olefinic unsaturation is hydrogenated.
Anionic polymerization of conjugated diene hydrocarbons with lithium initiators is well known as described in U.S. Pat. Nos. 4,039,593 and Re. 27,145 which descriptions are incorporated herein by reference. Polymerization commences with a monolithium, dilithium, or polylithium initiator which builds a living polymer backbone at each lithium site. Typical living polymer structures containing polymerized conjugated diene hydrocarbons are:
X—B—Li
X—A—B—Li
X—A—B—A—Li
Li—B—Y—B—Li
Li—A—B—Y—B—A—Li
wherein B represents polymerized units of one or more conjugated diene hydrocarbons such as butadiene or isoprene, A represents polymerized units of one or more vinyl aromatic compounds such as styrene, X is the residue of a monolithium initiator such as sec-butyllithium, and Y is the residue of a dilithium initiator such as the diadduct of sec-butyllithium and m-diisopropenylbenzene. Some structures, including those pertaining to polylithium initiators or random units of styrene and a conjugated diene, generally have limited practical utility although known in the art.
In general, the polymers useful in this invention may be prepared by contacting the monomer or monomers with an organoalkali metal compound in a suitable solvent at a temperature within the range from −150° C. to 300° C., preferably at a temperature within the range from 0° C. to 100° C. Particularly effective polymerization initiators are organolithium compounds having the general formula:
RLi
wherein R is an aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to 20 carbon atoms.
Suitable solvents include those useful in the solution polymerization of the polymer and include aliphatic, cycloaliphatic, alkyl-substituted cycloaliphatic, aromatic and alkyl-substituted aromatic hydrocarbons, ethers and mixtures thereof. Suitable solvents, then, include aliphatic hydrocarbons such as butane, pentane, hexane, heptane and the like, cycloaliphatic hydrocarbons such as cyclohexane, cycloheptane and the like, alkyl-substituted cycloaliphatic hydrocarbons such as methylcyclohexane, methylcycloheptane and the like, aromatic hydrocarbons such as benzene and the alkyl-substituted aromatic hydrocarbons such as toluene, xylene and the like and ethers such as tetrahydrofuran, diethylether, di-n-butyl ether and the like.
The hydrogenation of these polymers may be carried out by a variety of well established processes including hydrogenation in the presence of such catalysts as Raney Nickel, noble metals such as platinum, palladium and the like and soluble transition metal catalysts. Suitable hydrogenation processes which can be used are ones wherein the diene-containing polymer or copolymer is dissolved in an inert hydrocarbon diluent such as cyclohexane and hydrogenated by reaction with hydrogen in the presence of a soluble hydrogenation catalyst. Such processes are disclosed in U.S. Pat. Nos. 3,113,986, 4,226,952 and Reissue 27,145, the disclosures of which are herein incorporated by reference. The polymers are hydr
De Keyzer Noël Raymond Maurice
Stoner Carolyn Ann
Kraton Polymers US LLC
Medley Margaret
LandOfFree
Hot melt pressure sensitive positions adhesive (II) does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hot melt pressure sensitive positions adhesive (II), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hot melt pressure sensitive positions adhesive (II) will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2828653