Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
1999-08-05
2003-02-04
Aftergut, Jeff H. (Department: 1733)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S154000, C156S277000
Reexamination Certificate
active
06514367
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to plastic cards and the manufacture thereof by a hot lamination process, and more particularly to smart cards and the manufacture of these such that they conform to industry size and performance standards and conventions and that have a superior outer surface as compared to known smart cards such that the card may receive dye sublimation printing or the like. Even more specifically, the preferred embodiments of the present invention relate to dual function cards containing imbedded electronic elements as well as an exposed electronic contact surface.
BACKGROUND OF THE INVENTION
As the use of plastic cards for credit cards, automated teller machine (ATM) cards, identification cards, and like continues to become more widespread, the problems associated with the use of such cards correspondingly increase. Credit card fraud and identification card fraud are becoming larger problems everyday, and this fraud has introduced uncertainties into our systems of commerce and our security systems. Using easily available technology, criminals are able to manufacture credit/debit cards, ATM cards, identification cards, and the like having another's account code, identification code, or other personal information embedded in the magnetic stripe thereof. Thus, for example, criminals may steal hundreds or thousands of legitimate credit card account numbers and manufacture many additional cards bearing the stolen information. These fraudulent cards are then usable by the criminals to purchase goods and to receive cash with the legitimate card holder and the card issuer left holding the bill.
Likewise, so called debit cards are becoming increasingly popular. These cards have stored thereon a certain amount of value for which the card owner has previously paid. For example, a subway rider may purchase a card good for X fares, with one fare being deducted from the card each time the owner rides the subway. Criminals have also been able to manipulate the data stored on these cards to defraud the merchants and others.
The ease in which criminals have been able to manufacture and or manipulate known cards results from the existence of the easily altered magnetic stripe storage medium used by known cards. These magnetic stripes are easily programmed and reprogrammed using commonly available technology. Thus, there has been found a need in the plastic card industry to provide a more secure plastic card that is very difficult or impossible to fraudulently manipulate.
The likely successor to magnetic stripe cards is known as a memory or smart card. A smart card can generally be described as a card having an integrated circuit with memory that is capable of making decisions. The category of smart cards can be further divided into subcategories based on the type of memory or type of communication with an associated card reader. Types of smart cards include contact cards (cards requiring physical touch between the terminal reader and the surface of the card) and contactless cards (cards which interact with the terminal reader using an electromagnetic coupling). Contactless cards may also be referred to as “proximity” cards. This technology may serve as a substitute for or be provided as an addition to the magnetic stripe on a card.
One specific type of smart card is a dual function contact/contactless microprocessor chip plastic card commonly referred to in the industry as a dual function card. This card utilizes a single microprocessor to control both physical contact and proximity features of the card.
While these smart cards have been found to have infinitely more capability than magnetic stripe cards as well as being more successful in preventing or limiting fraud, they are more difficult and expensive to manufacture relative to ordinary magnetic stripe cards. One of the biggest obstacles to the wide spread manufacture and use of smart cards has been the inability of card manufacturers to manufacturer a smart card that meets all industry standards and specifications, such as those set by the International Standards Organization (ISO), that are sufficiently aesthetically pleasing (wherein the embedded electronics are hidden from view), and that have a sufficiently regular or flat surface such that one or both surfaces of the card may be printed on using the very popular and widespread dye sublimation technology.
Limitations to known plastic cards with embedded computer chips and electronics are that they a) are too thick to work in connection with existing card reading machinery (ATM machines, telephones), b) have a surface that is too irregular to properly and consistently receive dye sublimation printing, c) utilize manufacturing processes making the cards cost prohibitive. Moreover, prior attempts to manufacture a sufficiently thin plastic card including a computer chip embedded therein have resulted in a card with inferior aesthetic qualities such as the ability to see the embedded computer chip through the plastic.
Furthermore, due to the presence of both internal and surface electronics within the card, the manufacture of a dual function card presents its own unique set of obstacles and problems, different from the manufacture of cards with fully embedded electronics.
SUMMARY OF THE INVENTION
The present invention is therefore directed to a hot lamination method for the manufacture of a plastic card having at least one electronic element embedded therein as well as at least one electronic element with an exposed contact surface and to such plastic cards. The card has an overall thickness in the range of 0.028 inches to 0.032 inches and comprises a plastic core having at least one electronic element embedded therein with at least one of the upper and lower surfaces of the core comprising a coating printed or otherwise applied thereon. A portion of the card's outer surface exposes a contact surface electronic element operatively connected to the card's internal electronics. An overlaminate film is preferably provided over the coated surface of the core and the resulting card has a variation in thickness across the surfaces thereof of no greater than approximately 0.0005 inches.
The hot lamination method of the present invention comprises the steps of providing upper (first) and lower (second) plastic core sheets, positioning at least one electronic element between the first and second core sheets to thus form a core, and placing the core in a laminator and closing the laminator with minimal or no laminator ram pressure applied to the core. A heat cycle is applied to the core sheets in the laminator to cause complete or partial flow of the plastic sheets. The laminator ram pressure is then increased in combination with the heat. A cooling cycle is then applied to the core in the laminator, preferably with an associated increase in ram pressure, and the core is removed from the laminator.
In the preferred embodiment, the laminated core next undergoes a controlled depth milling operation to expose one or more contact pads which comprise part of the internal, embedded electronic element.
In alternative embodiments, one of the plastic sheets contained a pre-formed window which is positioned over the contact pads, prior to lamination. A spacer, integral to the corresponding platen or separate therefrom, is utilized to prevent or limit the flow of plastic into the window region so as not to coat the contact pads with plastic during the card manufacturing process.
At least one surface of the core is then printed on using a printing press or similar printing apparatus, a sheet of overlaminate film is placed on at least one side of the core, and the core is once again placed in a laminator. A heat cycle is applied to the core with its overlaminate film, and a cooling cycle is thereafter applied, resulting in a sheet of plastic card stock from which one or more cards may be cut.
Contact surface elements are installed into the window region of a plastic card and in operable contact with contact pads.
The invention is also directed to
Aftergut Jeff H.
Hahn Loeser & Parks LLP
LandOfFree
Hot lamination process for the manufacture of a combination... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hot lamination process for the manufacture of a combination..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hot lamination process for the manufacture of a combination... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3123631