Hospital drug distribution system

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S225000, C700S227000, C700S230000, C700S235000, C700S242000, C198S867150

Reexamination Certificate

active

06597969

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention pertains to the field of medication distribution systems. More particularly, the invention pertains to an efficient system for automatically dispensing and distributing solid medicinal units, such as pills and capsules, to patients, primarily in a hospital setting.
2. Description of Related Art
Various drug storage and dispensing devices are disclosed in the art. These devices are primarily concerned with efficient storage and dispensing of a number of pills or capsules based upon patient needs. There are few if any devices, however, directed to implementing a comprehensive, efficient, and error free means of distributing a few medicinal units to hundreds or thousands of patients simultaneously—such as in a hospital setting—where patients have varying medicinal needs that must be fulfilled at selected times of the day.
The invention disclosed in U.S. Pat. No. 2,577,344 is directed to a “Narcotic Dispenser” in which the drugs are stored in individual tubes, with a weight pressing them down, and the tubes are refilled and distributed to the dispenser. The tubes are kept side-by-side in a cabinet in which are visible all stored narcotic vials, and the number of units remaining for each. The invention contemplates use of a single cup which is manually positioned underneath the tube containing the particular narcotic to be dispensed. The apparatus does not, however, include means of automatically and simultaneously filling many cups with the medications needed by a large number of patients.
U.S. Pat. No. 5,907,493 is a “Pharmaceutical Dispensing System”, for organizing a pharmacy by “sequentially and interactively” instructing pharmacists in filling prescriptions. The system uses a number of dispensers, each with a microprocessor. Barcode labels are printed and applied to vials. The vials are scanned, and a “ready to fill” light is lit on the dispenser. A microswitch detects the vial is in position, and the pills are dispensed. There is no conveyor system, and no provision to operate the system automatically for a number of vials—each vial must be separately, consecutively, and manually scanned, carried to the dispenser, filled, and capped.
Due to the above-described and other limitations, it is desirable to provide a medicament-dispensing system that compactly stores hundreds or thousands of different drugs, and dispenses the drugs accurately and efficiently for hundreds of patients, primarily in a hospital setting, at selected times of the day. Such a hospital drug distribution system should minimize the possibility of human error resulting in the wrong medication being dispensed. It should also be operable in a manual mode for exceptional cases where drugs are needed at other than the selected times of the day, or where only a small number of drug orders must be filled. Such might be the case, for example, in a small nursing home. Additionally, as the number of drugs to be handled by the system grows, the system should be able to grow accordingly in an efficient and cost-effective manner. For that reason, the system should be modular, to allow for easy expansion to include an ever larger set of drugs.
SUMMARY OF THE INVENTION
This application discloses and claims an invention that is useful in conjunction with an apparatus of the type shown and described in a commonly owned U.S. application entitled, “DRUG STORAGE AND DISPENSING APPARATUS,” filed on the same day as the present application. That application is hereby incorporated by reference herein in its entirety.
The invention comprises a hospital drug distribution system, or HDDS, for dispensing and distributing solid medicinal units, such as pills, capsules, or the like (hereinafter, “medicinal units,” or simply, “units”), automatically and efficiently, based upon patient needs. In the invented device, the medicinal units are stored in long, thin tubes, positioned vertically, side-by-side. Each tube has a valve at the bottom, with control electronics to dispense a precise number of units from the tube. The tubes are arranged, preferably, in a U-shaped arrangement, and are suspended over a conveying means which transports cups that receive the dispensed units. In the preferred embodiment, the conveying means transports the cups via cup-holding trays placed upon it, and there are nine to twelve cups per tray.
Prior to entering upon the conveying means, a cup-labeling subsystem draws data from the main computer database containing records of patients' medicinal needs. Based upon such data, this labeling subsystem places labels on cups on the conveying means, on the way to be filled with medicaments. Each label contains barcode-encoded data including the patient's name, location, and medicinal requirements. The label is placed by this subsystem on the side of a cup specially designed for receiving dispensed medicaments from the drug tubes. The cups are placed upon special trays and the trays conveyed upon the conveying means under each drug tube in turn, as described below.
The conveying means proceeds in a step-and-stop fashion, whereby each cup stops briefly beneath each drug tube. The progress of the cups through the system is controlled by a computer. If the cup underneath a particular drug tube pair is assigned to a patient who needs medicinal units stored in those tubes, the valve at the bottom of the active tube of the pair dispenses the required number of units into the cup. At each step, after all such dispensing has finished, the computer signals the conveying means to “step-and-stop” once again, thus moving each cup to the next tube pair. The cups are arranged on the conveying means in single file such that, during any given ‘stop’ period, there is only one cup underneath each tube pair. In such manner, each cup begins its journey at the beginning of the conveying means, and stops underneath each tube pair for possible dispensing of medicinal units. Because multiple cups make their way upon the conveying means simultaneously (and in single-file), dispensing of drugs is efficient as it takes place for multiple patients in parallel. The process begins with the first cup stopping under the first tube pair. In the next step, the first cup stops under the second tube pair, and the second cup stops under the first tube pair, and so on. When the cups reach the end of the conveying means, a tray-removal subsystem removes the trays therefrom and places them on special carts for distribution to the patients.
In one embodiment of the invented system, there is only one such cup per patient; by the time each cup has completed its journey and stopped briefly beneath each tube pair, it contains the exact mix, or “cocktail,” of drugs needed by the patient to which it is assigned. In another embodiment, each cup holds only one type of medication, and hence, each patient has one or multiple cups. All cups assigned to a patient are delivered to the patient by a hospital staff member. The advantage of this one-cup-per-patient-per-medication embodiment is that, if any drugs go unused and the cups remain sealed, such unused drugs are returned to the drug refilling center for recycling into a new drug tube.
Each tube is stocked to contain a large number of units of the same medication. A valve at the bottom of each tube is specially designed for efficient dispensing of the appropriate number of medicinal units into the cup underneath it, according to data delivered to the valve's control electronics. For each set of valves there is a barcode scanner and reader (collectively, the barcode reader), disposed adjacent to the conveying means near the valves. The barcode reader scans and reads the barcode on the cup as the cup arrives underneath the valves to which the reader is coupled. The decoder interprets the barcode and transmits the code(s) of the required drug(s) to the valves. If any such code corresponds to the code of the drug dispensed by the valve, and if the valve is in “active” status, the valve dispenses the indicated number of medicinal units into

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hospital drug distribution system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hospital drug distribution system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hospital drug distribution system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3108813

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.