Land vehicles – Wheeled – Articulated vehicle
Reexamination Certificate
2002-03-21
2003-05-13
Dickson, Paul N. (Department: 3616)
Land vehicles
Wheeled
Articulated vehicle
C172S272000
Reexamination Certificate
active
06561535
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to agricultural equipment and more specifically to a hose guide for use with an extendable multi-stage hitch assembly for linking an agricultural implement to a prime mover.
BACKGROUND OF THE INVENTION
Various types of agricultural implements have been developed that can be linked via an implement tongue member to a tractor hitch or other type of prime mover to facilitate different tasks including, for example, seeding, fertilizing and tilling. Hereinafter, unless indicated otherwise, the background of the invention and the present invention will be described in the context of an exemplary planter implement assembly.
While there are many different factors that have to be considered when assessing the value of a planter assembly, one relatively important factor is how quickly the assembly can accomplish the task that the assembly has been designed to facilitate. One way to increase task speed has been to increase planter assembly width thereby reducing the number of passes required to perform the implement's task for an entire field. Thus, for instance, doubling the width of the exemplary planter assembly generally reduces the time required to completely seed a field by half.
With the development of modern high-powered tractors and planter assemblies, many planter assemblies extend to operating field widths of 40 feet or more. Hereinafter when a planter assembly is extended into an operating configuration to accomplish a seeding task, the planter assembly will be said to be in an operating position and have an operating width.
Unfortunately, while expansive planter assembly operating widths are advantageous for quickly accomplishing tasks, such expansive widths cannot be tolerated during planter assembly transport and storage. With respect to transport, egresses to many fields are simply not large enough to accommodate transport of a 40 plus foot planter assembly into and out of the fields. In addition, often buildings and fences obstruct passageways and therefore will not allow transport. Moreover, many farm fields are separated by several miles and farmers have to use commercial roadways to transport their planter assemblies to and from fields. Essentially all commercial roadways are not designed to facilitate wide planter assembly transport.
Recognizing the need for expansive planter assembly operating widths and relatively narrow transport widths, the industry has developed some solutions that facilitate both transport and operating widths. To this end, one solution has been to provide piece-meal planter assemblies that can be disassembled into separate sections and stacked on a wheel supported carrier member or on a separate trailer for transport. Obviously this solution is disadvantageous as it requires excessive labor to assemble and disassemble the planter assemblies between transport and intended use and may also require additional equipment (e.g., an additional trailer).
Another solution has been to provide a folding planter assembly configuration. For instance, in a “scissors type” configuration, where a planter assembly chassis is supported by wheels, right and left implement bars are pivotally mounted to the chassis where each bar is moveable between an operating position extending laterally from the chassis and a transport position where the bar is forwardly swingable over the tongue member and supportable by the tongue member during transport. As another instance, “pivotal-type” configurations provide a single implement bar centrally mounted for pivotal movement on a wheel supported carrier platform where the single bar is pivotable about the mount so that half of the bar extends over the tongue member and is supportable thereby and the other half of the bar extends away from the tractor behind the chassis. In either of these scissors or pivotal configurations, the tongue member has to be long enough to accommodate half the implement bar length plus some clearance required to allow a tractor linked to the tongue member to turn left and right. Thus, for instance, where the planter assembly operating width is 40 feet, the tongue member generally has to be greater than 20 feet long.
While task speed is one important criteria with which to judge planter assembly value, one other important criteria is planter assembly effectiveness and efficiency. In agricultural endeavors, perhaps the most important measure of effectiveness is yield per acre. For this reason, when seeding a field, a farmer wants to seed every possible square foot of the field and thereafter, when maintaining (i.e., tilling, fertilizing, etc.) and harvesting a field, the farmer wants to avoid destroying the plants in the field. To maximize field seeding, farmers typically travel along optimal field paths. For instance, to ensure that seed is planted along the entire edge of a field, a farmer typically starts seeding the field by first traveling around the edge of the field with a seeding implement at least once and often two or more times along adjacent consecutively smaller paths prior to traveling in parallel rows through the field. These field edge paths are generally referred to in the industry as headland passes. By performing one or more headland passes about a field edge prior to performing parallel passes, the farmer provides a space for turning the tractor and implement around between parallel passes while still covering the entire space along the field edge.
While headland passes increase overall field coverage, whenever a tractor is driven over field sections that have already been seeded, the tractor and planter assembly wheels crush the seeds or growing plants that they pass over and therefore reduce overall field production (i.e., yield per acre). For this reason, as known in the industry, where possible, farmers routinely attempt to reduce the number of headland passes required in a field.
Unfortunately, the number of headland passes required to facilitate complete field coverage is related to the turning radius of a tractor and planter assembly combination and the combination turning radius is directly related to the length of the tongue member between the planter assembly and the tractor. Thus, for instance, where the tongue is six feet long the turning radius may require only one headland pass while a twenty foot long tongue may require two or more headland passes to facilitate complete coverage.
Recognizing that a short tongue during planter assembly operation reduces the number of required headland passes and therefore increases efficiency and that a long tongue is desirable to accommodate pivotal and scissors type implement configurations, some industry members have developed staged tongue members that expand to accommodate implement transport and retract to provide a minimal turning radius during implement operation. One of these solutions provides a single stage telescoping tongue member including a first tongue member mounted to a planter assembly chassis and a second tongue member that is telescopically received in the first tongue member. To facilitate expansion and retraction, a hydraulic cylinder is positioned within one of the first and second tongue members with a base member mounted to one of the tongue members and a rod secured to the other of the tongue members. With relatively large implements and tractors, the force required by the cylinder is relatively large. By placing the cylinder inside the tongue members, cylinder force is evenly distributed thereby reducing cylinder wear, reducing cylinder requirements and increasing the useful cylinder life cycle.
While better than non-telescoping tongue members, unfortunately, single stage members cannot telescope between optimal maximum and minimum lengths. For this reason, where single stage tongue members have been employed, either extended implement operating width has been minimized or extra headland passes have been used to accommodate a larger than optimum turning radius.
One other solution has been to provide a multi-stage tongue member that is able
Jamilosa James G.
Paluch Paul M.
Case LLC
Dickson Paul N.
Henkel Rebecca L.
Rosenberg Laura B.
LandOfFree
Hose control for planter apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hose control for planter apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hose control for planter apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3093544