Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite
Reexamination Certificate
1999-05-21
2001-08-28
Pihulic, Daniel T. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Directive
Including a satellite
Reexamination Certificate
active
06281836
ABSTRACT:
BACKGROUND
The Global Positioning System (GPS) is a system of satellite signal transmitters that transmits information from which an observer's present location and/or the time of observation can be determined. Another satellite-based navigation system is called the Global Orbiting Navigational System (GLONASS), which can operate as an alternative or supplemental system.
The GPS was developed by the United States Department of Defense (DOD) under its NAVSTAR satellite program. A fully operational GPS includes more than 21 Earth orbiting satellites approximately uniformly dispersed around six circular orbits with four satellites each, the orbits being inclined at an angle of 55° relative to the equator and being separated from each other by multiples of 60° longitude. The orbits have radii of 26,560 kilometers and are approximately circular. The orbits are non-geosynchronous, with 0.5 sidereal day (11.967 hours) orbital time intervals, so that the satellites move with time relative to the Earth below. Generally, four or more GPS satellites will be visible from most points on the Earth's surface, which can be used to determine an observer's position anywhere on the Earth's surface. Each satellite carries a cesium or rubidium atomic clock to provide timing information for the signals transmitted by the satellites. An internal clock correction is provided for each satellite clock.
Each GPS satellite continuously transmits two spread spectrum, L-band carrier signals: an L
1
signal having a frequency f
1
=1575.42 MHz (nineteen centimeter carrier wavelength) and an L
2
signal having a frequency f
2
=1227.6 MHz (twenty-four centimeter carrier wavelength). These two frequencies are integral multiplies f
1
=1,540 f
0
and f
2
=1,200 f
0
of a base frequency f
0
=1.023 MHz. The L
1
signal from each satellite is binary phase shift key (BPSK) modulated by two pseudo-random noise (PRN) codes in phase quadrature, designated as the C/A-code and P-code. The L
2
signal from each satellite is BPSK modulated by only the P-code. The nature of these PRN codes is described below.
Use of PRN codes allows use of a plurality of GPS satellite signals for determining an observer's position and for providing the navigation information. A signal transmitted by a particular GPS satellite is selected by generating and matching, or correlating, the PRN code for that particular satellite. Some of the PRN codes are known and are generated or stored in GPS satellite signal receivers operated by users.
A first known PRN code for each GPS satellite, sometimes referred to as a precision code or P-code, is a relatively long, fine-grained code having an associated clock or chip rate of f
0
=10.23 MHz. A second known PRN code for each GPS satellite, sometimes referred to as a clear/acquisition code or C/A-code, is intended to facilitate rapid satellite signal acquisition and hand-over to the P-code and is a relatively short, coarser-grained code having a clock or chip rate of f
0
=1.023 MHz. The C/A-code for any GPS satellite has a length of 1023 chips or time increments before this code repeats. The full P-code has a length of 259 days, with each satellite transmitting a unique portion of the full P-code. The portion of P-code used for a given GPS satellite has a length of precisely one week (7.000 days) before this code portion repeats.
Accepted methods for generating the C/A-code and P-code are set forth in the document ICD-GPS-200: GPS Interface Control Document, ARINC Research, 1997, GPS Joint Program Office, which is incorporated by reference herein.
The GPS satellite bit stream includes navigational information on the ephemeris of the transmitting GPS satellite (which includes orbital information about the transmitting satellite within next several hours of transmission) and an almanac for all GPS satellites (which includes a less detailed orbital information about all satellites). The transmitted satellite information also includes parameters providing corrections for ionospheric signal propagation delays (suitable for single frequency receivers) and for an offset time between satellite clock time and true GPS time. The navigational information is transmitted at a rate of 50 Baud.
A second satellite-based navigation system is the Global Orbiting Navigation Satellite System (GLONASS), placed in orbit by the former Soviet Union and now maintained by the Russian Republic. GLONASS uses 24 satellites, distributed approximately uniformly in three orbital planes of eight satellites each. Each orbital plane has a nominal inclination of 64.8° relative to the equator, and the three orbital planes are separated from each other by multiples of 120° longitude. The GLONASS satellites have circular orbits with a radii of about 25,510 kilometers and a satellite period of revolution of {fraction (8/17)} of a sidereal day (11.26 hours). A GLONASS satellite and a GPS satellite will thus complete 17 and 16 revolutions, respectively, around the Earth every 8 days. The GLONASS system uses two carrier signals L
1
and L
2
with frequencies of f
1
=(1.602+9 k/16) GHz and f
2
=(1.246+7 k/16) GHz, where k (=1,2, . . . 24) is the channel or satellite number. These frequencies lie in two bands at 1.597-1.617 GHz (L
1
) and 1,240-1,260 GHz (L
2
). The L
1
signal is modulated by a C/A-code (chip rate=0.511 MHz) and by a P-code (chip rate=5.11 MHz). The L
2
signal is presently modulated only by the P-code. The GLONASS satellites also transmit navigational data at a rate of 50 Baud. Because the channel frequencies are distinguishable from each other, the P-code is the same, and the C/A-code is the same, for each satellite. The methods for receiving and demodulating the GLONASS signals are similar to the methods used for the GPS signals.
Reference to a Satellite Positioning System or SATPS herein refers to a Global Positioning System, to a Global Orbiting Navigation System, and to any other compatible satellite-based system that provides information by which an observer's position and the time of observation can be determined, all of which meet the requirements of the present invention.
A Satellite Positioning System (SATPS), such as the Global Positioning System (GPS) or the Global Orbiting Navigation Satellite System (GLONASS), uses transmission of coded radio signals, with the structure described above, from a plurality of Earth-orbiting satellites. An SATPS antenna receives SATPS signals from a plurality (preferably four or more) of SATPS satellites and passes these signals to an SATPS signal receiver/processor, which (1) identifies the SATPS satellite source for each SATPS signal, (2) determines the time at which each identified SATPS signal arrives at the antenna, and (3) determines the present location of the SATPS satellites.
The range (r
i
) between the location of the i-th SATPS satellite and the SATPS receiver is equal to the speed of light c times (&Dgr;t
i
), wherein (&Dgr;t
i
) is the time difference between the SATPS receiver's clock and the time indicated by the satellite when it transmitted the relevant phase. However, the SATPS receiver has an inexpensive quartz clock which is not synchronized with respect to the much more stable and precise atomic clocks carried on board the satellites. Consequently, the SATPS receiver estimates a pseudo-range (pr
i
) (not a true range) to each satellite.
After the SATPS receiver determines the coordinates of the i-th SATPS satellite by demodulating the transmitted ephemeris parameters, the SATPS receiver can obtain the solution of the set of the simultaneous equations for its unknown coordinates (x
0
, y
0
, z
0
) and for unknown time bias error (cb). The SATPS receiver can also determine velocity of a moving platform.
The given above discussion assumes that a satellite navigational system used for the navigation purposes is functioning properly.
GPS satellites can provide users with warnings of satellite malfunctions. Sometimes, the warnings may take more
Lupash Lawrence O.
Wlad Joseph M.
Pihulic Daniel T.
Tankhilevich Boris G.
Trimble Navigation LTD
LandOfFree
Horizontal/vertical protection level adjustment scheme for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Horizontal/vertical protection level adjustment scheme for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Horizontal/vertical protection level adjustment scheme for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2521271