Stock material or miscellaneous articles – Structurally defined web or sheet – Honeycomb-like
Reexamination Certificate
2001-05-16
2002-08-27
Zimmerman, John J. (Department: 1775)
Stock material or miscellaneous articles
Structurally defined web or sheet
Honeycomb-like
C428S116000, C156S197000
Reexamination Certificate
active
06440527
ABSTRACT:
The invention relates to a method of manufacturing honeycomb structures which includes the following steps:
connecting a plurality of foils to one another so as to realize a stack of interconnected foils which form a honeycomb structure in the expanded condition, the foils being fused at various bonding locations, and
expanding the plurality of foils in a direction transversely of the surface of the foils in order to form the honeycomb structure.
The invention also relates to a honeycomb structure which includes a plurality of foils which are interconnected in different bonding locations by welding.
The method and the honeycomb structure of the described kind are known from international patent application WO 93/01048. Because of their low weight and unique structural properties, honeycomb structures are universally used in industrial applications. Honeycomb structures made of comparatively thin foils are widely used because of their low weight and ability to withstand high compression loads. Such honeycomb structures are used, for example in aircraft components and running shoes.
Honeycomb structures are also used in, for example an X-ray examination apparatus. Such an X-ray examination apparatus then includes an adjustable X-ray filter. The adjustable X-ray filter includes a bundle of capillary tubes which are formed by the honeycomb structure. The capillary tubes may be completely or partly filled with an X-ray absorbing liquid. Furthermore, one end of the capillary tubes is connected to a reservoir containing an X-ray absorbing liquid. An electric voltage is applied across the tubes and the X-ray absorbing liquid in order to fill the capillary tubes. This enables adjustment of a two-dimensional intensity profile of an X-ray beam traversing the X-ray filter. Honeycomb structures are also used as light diffusers in luminaries.
The known method realizes the honeycomb structure by expansion of interconnected foils. A stack of foils is formed by successively arranging first and second foils against one another and by heating the bonding locations via the second foil, so that the first and second foils start to melt. When the desired melting depth has been reached in the first foil, heating is terminated and the foils are cooled. Subsequently, a next foil is placed on the stack. The described process steps are repeated until the stack contains a number of foils which suffices to realize a honeycomb structure comprising the desired number of channels. After the plurality of foils has been interconnected in this manner, the stack of foils is expanded by pulling in order to form the honeycomb structure.
It is a drawback of the known process that it is difficult to apply the appropriate amount of heat to the bonding locations on the second foils so as to achieve the desired melting depth and to prevent the foils from being completely connected to one another.
It is an object of the invention to provide a method where the amount of heat to be applied is not critical and the foils are not completely connected to one another. To achieve this, the method according to the invention is characterized in that it includes a step for providing a structured separating layer on at least one side of the foil in order to realize the bonding locations on the foil. Other attractive versions of the method according to the invention are disclosed in the dependent Claims. The separating layer is structured in such a manner that it comprises openings which constitute the bonding locations. Neighboring foils to both sides of the relevant separating layer can contact one another via the openings. When pressure is exerted on the stack of foils with the separating layers inserted between individual foils, the neighboring foils are bonded together at the areas where they contact one another at the bonding locations in the separating layers. The separating layers prevent the bonding of neighboring foils outside the bonding locations. For example, the bonding locations are formed by narrow strips which form the bonding seams along which the neighboring foils are fused by thermal compression so that they are bonded together along said bonding seams. The insertion of the structured separating layer also offers the advantage that the process of bonding the foils in the stack can be accelerated. Furthermore, the structured layer can be provided, for example by providing a metal layer on the foil and by locally removing material of the metal layer so as to define the bonding locations. A further advantage resides in the fact that the foils to be used may be thin. For example, use is made of foils having a thickness of approximately 5 &mgr;m. Furthermore, it is advantageous to use foils having a high mechanical strength. It has been found that polypropylene sulphon (PPS) is a suitable material for the foils; polyethyleneterephthalate (PETP), polyethylene and polyesters are also suitable materials for forming the foils.
The stacked foils are preferably expanded by clamping the foils transversely of the plane of the foils. As a result, neighboring foils locally move away from one another at the areas where they are not interconnected. The expanded, stacked foils can be maintained in the expanded condition by keeping them mechanically clamped. The stacked foils can also be maintained in the expanded condition by drastically reducing the elasticity of the foils, after clamping, by temporary heating or irradiation by means of X-rays or ultraviolet radiation. The pattern of cross-sections of the channels in the honeycomb is determined by the degree of expansion of the stack of foils transversely of the foil surface, the spacing of the bonding seams in the direction parallel to the surface of the foils, the seams along which the foils are attached to one another, and the width of said bonding seams. If the width of the bonding seams in a regular pattern between adjoining foils is approximately three times smaller than their spacing and if the stack of foils is expanded only slightly, a more or less eye-shaped pattern will be obtained; if the stack is expanded further, a hexagonal honeycomb pattern arises and if the stack is expanded even further, a pattern of rectangles having slightly rounded corners is obtained. Using a honeycomb pattern it is achieved notably that the mechanical strength of the expanded stack of foils is very high. When the width of the bonding seams in a regular pattern between adjoining foils is approximately two times smaller than their spacing, a rhombic pattern (with slightly rounded corners) or a pattern of eyes will be obtained, depending on whether the stack of foils is expanded more or less. When the bonding seams are much narrower than their spacing and the stack of foils is expanded only slightly, an eyeshaped pattern of channel cross-sections is formed. The directions of the channels in the expanded foils are dependent on the directions of the bonding seams relative to one another in the expanded foils. For example, when straight or curved, mutually parallel bonding seams are used, straight and curved channels, respectively, are formed and when the bonding seams are made to converge towards one another, tapered channels are formed. Furthermore, it is also possible to use bonding seams which are parallel in pairs while individual pairs of bonding seams enclose a small angle relative to one another. This yields filter elements in the form of channels; individual channels then enclose an angle relative to one another. It is also possible to realize other shapes by non-parallel expansion of the outermost foils.
A special version of the invention is characterized in that the step for realizing the structured separating layer comprises two sub-steps: a first sub-step for providing a separating layer on the at least one side of the foil, and a second sub-step for providing structures in the separating layer by the removal of material from the separating layer in order to realize the bonding locations. The bonding locations on the foils are thus defined. Material can be removed from the separating
Jans Johannes C.
Linders Petrus W. J.
Prins Menno W. J.
Koninklijke Philips Electronics , N.V.
Zimmerman John J.
LandOfFree
Honeycomb structure and method of manufacturing honeycomb... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Honeycomb structure and method of manufacturing honeycomb..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Honeycomb structure and method of manufacturing honeycomb... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2913157