Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Waste gas purifier
Reexamination Certificate
2000-09-29
2003-12-02
Tran, Hien (Department: 1764)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Waste gas purifier
C422S171000, C422S177000
Reexamination Certificate
active
06656435
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention lies in the field of honeycomb bodies. The present invention relates to a honeycomb body with adsorber material, in particular, for a hydrocarbon trap (HC trap), preferably in an exhaust emission control system of a motor vehicle.
As emission control requirements that motor vehicles have to meet become increasingly more stringent worldwide, particular attention is being paid to cleaning the exhaust gas in the cold-starting phase of an internal combustion engine. The reason for the emphasis is that relatively large quantities of unburned hydrocarbons are present in the exhaust gas immediately after an internal combustion engine is started, while, at the same time, catalytic converters in the exhaust emission control system are not yet at a sufficiently high temperature for the catalytic conversion of these hydrocarbons. One solution for reducing the emission of hydrocarbons, in particular, during the cold-starting phase of an internal combustion engine, is the use of an HC trap. An HC trap is generally a honeycomb body with channels through which a gas can pass. Separating walls separate the channels at least partly from one another. The honeycomb body is coated with an adsorber material, preferably zeolite, which adsorbs hydrocarbons at a low temperature and desorbs them again at a higher temperature. Typically, such HC traps are disposed upstream of a catalytic converter in an exhaust flow direction. An example of such a converter is disclosed, for example, from European Patent 0 582 971 B1. European Patent Application 0 424 966 A1 also describes such a system, with the HC trap additionally being bridged at the end of the cold-starting phase by a bypass line in order to avoid overheating in continuous operation. What is described here may also be of significance in the case of adsorbers for other constituents of the exhaust gas, for example, nitrogen oxides or water.
All previous concepts for the construction and configuration of an HC trap allowed for the fact that scarcely any adsorber materials existed that were durable on a long-term basis in an exhaust system of an internal combustion engine, while, at the same time, that had a desorption temperature lying above the minimum temperature necessary for a catalytic conversion of hydrocarbons. Accordingly, previous concepts assumed that an HC trap should have a high specific thermal capacity, in particular, a higher thermal capacity than a downstream catalytic reactor, so that the catalytic reactor could heat up to the minimum temperature necessary for the catalytic reaction before initiation of desorption in the HC trap. The concept is described, in particular, also by European Patent 0 582 971 B1.
In spite of this, a problem remains that the HC trap draws heat from the exhaust gas in the cold-starting phase and, as a result, delays the time taken by a downstream catalytic converter to reach the minimum temperature necessary for the catalytic reaction. The delay made it always difficult to find a compromise for dimensioning an HC trap and a downstream catalytic converter.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a honeycomb body with adsorber material, in particular, for a hydrocarbon trap, that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that provides a honeycomb body with adsorber material, in particular, for hydrocarbons, which permits improved cleaning of the exhaust gas of an internal combustion engine, in particular, in the cold-starting phase.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a honeycomb body, including separating walls defining channels for channelling a gas, and an adsorber material disposed on at least part of the separating walls, the separating walls being made from a material and having a thickness, the material and the thickness of the separating walls defining a specific thermal capacity in relation to a unit of surface area, the channels having an inner cross-sectional shape and being separated at least partly from one another by the separating walls, the inner cross-sectional shape and a number of the channels defining a specific geometrical surface area, measured in square meters per liter (m
2
/l), of a honeycomb body, the geometrical surface area divided by a surface-area-related specific thermal capacity, measured in kilojoules per Kelvin per square meter (kJ/(K·m
2
)), at room temperature, as well as without adsorber material and without any other coatings, being at least equal to 37.5 meters·Kelvin per Joule (m·K/J) To achieve the objective, the invention provides a honeycomb body with channels through which a gas can pass. The inner cross-sectional shape and number of the channels define a specific geometrical surface area (“GSA”), measured in m
2
/l, of the honeycomb body, and separating walls separate the channels at least partly from one another. The material and thickness of the separating walls define a specific thermal capacity (cp) in relation to the geometrical surface area, measured in kJ/(K·m
2
), of the honeycomb body. The honeycomb body further has an adsorber material, in particular, for hydrocarbons, and the specific geometrical surface area (GSA) of the honeycomb body divided by the surface-area-related specific thermal capacity (cp), measured at room temperature and without adsorber material and without any other coatings, is greater than or equal to 37.5 m·K/J (meters·Kelvin/Joule) Preferably, the cp is greater than or equal to 40, and, in particular, greater than or equal to 60.
The thermal capacity of a material is dependent on the temperature of the material and, in the case of exhaust emission control systems, is often considered and specified for relatively high temperature ranges. For functioning as an adsorber, in particular an HC trap, however, the temperature range below 350° C. is decisive, for which reason the figures specified in the present case are related to room temperature, that is 20° C. The specific thermal capacity in the sense defined here is the thermal capacity in relation to a unit of geometrical surface area of the honeycomb body. The unit is a value dependent on the wall thickness and porosity of the separating walls and material.
Previous considerations assumed that an HC trap should not reach the desorption temperature, at which the desorption of hydrocarbons begins, before a downstream catalytic converter has reached a minimum temperature necessary for the catalytic conversion. However, such a consideration does not take into account the fact that, when the necessary minimum temperature is reached, the catalytic conversion brings about the complete conversion of all hydrocarbons very quickly. Such conversion occurs because, even if the catalytic converter reaches the necessary minimum temperature only at one point, the catalytic converter completely heats up further almost abruptly because of the exothermal reaction then taking place. As the converter does so, it catalytically converts all the hydrocarbons flowing onto it. In contrast, the desorption in an HC trap proceeds very slowly. Therefore, even when the desorption temperature is reached and after it is exceeded, the stored hydrocarbon is released only gradually. In contrast with the technical teaching in the past, the realization, found after calculations and tests, leads to an HC trap with as low a thermal capacity as possible and as large a geometrical surface area as possible being preferred. A ratio between the specific geometrical surface area and surface-area-related specific thermal capacity, measured at room temperature and without adsorber material and without any other coatings, of greater than or equal to 40 m·K/J has been found to be favorable. Preferred even still is a larger ratio of greater than or equal to 60. In the case of such a configuration, although the HC trap heats up relatively quickly in the exhaust gas flow during the cold-starting phase, and
Brück Rolf
Hirth Peter
Emitec Gesellschaft fuer Emissions-technologie mbH
Greenberg Laurence A.
Mayback Gregory L.
Stemer Werner H.
Tran Hien
LandOfFree
Honeycomb body with adsorber material, in particular, for a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Honeycomb body with adsorber material, in particular, for a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Honeycomb body with adsorber material, in particular, for a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3180061