Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control
Reexamination Certificate
2000-11-17
2002-10-01
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Robot control
C700S247000, C700S256000, C700S258000, C700S259000, C318S568110, C318S568120, C318S568160, C318S587000, C342S457000, C342S418000
Reexamination Certificate
active
06459955
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to autonomous, microprocessor controlled home cleaning robots having useful functions. More specifically, the present invention relates to autonomous, mobile home cleaning robots having a low energy cleaning apparatus. Even more specifically, the present invention relates to autonomous, mobile home cleaning robots having a low energy cleaning apparatus and a capability of adaptively performing and being trained to perform useful chores.
BACKGROUND OF THE INVENTION
Toys have provided play value and entertainment to children when the child imagines the toys are capable of independent behavior. Microprocessor controlled toys have recently offered limited simulations of living behavior for the non-productive enjoyment of children including violence-oriented video games. Microprocessor based toys, until now, do not educate by engaging in useful task-oriented behaviors with the child. Ideally a toy should benefit the child by not only providing play value, but also transparently encourage creative, task-oriented behavior which benefits the child and reduces the workload of working families. This invention is directed toward that end.
Principles of toys can be adapted to useful home cleaning robots. A toy that serves that purpose would be capable of performing useful tasks, capable of easily being trained by the child to perform tasks, and would be adaptive in operation to account for less then ideal training. Further the toy should have the appearance of some real or imaginary thing consistent with the useful behavior the child and toy would be engaged in so that the child's interaction is with an emotionally engaging plaything. Once learned, the task-oriented behavior should be storable, transferable, and recallable.
Non-functional toys intended to encourage task-oriented behavior in children have traditionally approximated tools and appliances used to perform tasks. For example, U.S. Pat. No. 5,919,078 (Cassidy, issued Jul. 6, 1999) discloses a toy which has the appearance of a cyclone-type vacuum cleaner. However, it does not vacuum, learn, or adapt.
Toys are also known to the art, which while they do not perform useful functions, do have some level of behavioral response to their environment. Recent examples of such toys are “Electronic Furby” available from Tiger Electronics, Vernon Hills, Ill. and various “Actimates” interactive dolls from Microsoft Corp., Redmond Wash. These toys are not suitable for teaching children to perform useful tasks although some of the better toys may build intellectual skills in reading, writing, or math. They do not learn tasks nor are they substantially adaptive to their environment.
Toys are also known to the art which are programmable by some means but which do not respond to environmental changes. For example U.S. Pat. No. 4,702,718 (Yanase, issued Oct. 27, 1987) discloses a mobile toy wherein the toy responds optically to prerecorded, rotating disks.
Toys are known which are mobile and to a limited degree have some means to perform a useful function but which are not trainable or adaptive. An example is a Dustbot toy previously sold by Radio Shack/Tandy Corporation, Fort Worth, Tex., catalog number 60-2556 which was a motorized, mobile toy capable of lightly vacuuming crumbs from a table-top. The toy was not trainable or adaptive.
Expensive consumer robots primarily intended for entertainment are known. A recent example is a robotic entertainment dog called “Aibo” available briefly from the Sony Corporation at a cost two orders of magnitude beyond most toys. Various devices of this type including commercially available research robots have been promoted as home robots for many years without widespread commercial success. Typically they require complex user interactions including programming, are not designed to perform useful tasks and are too costly to serve as children's toys as opposed to prestigious adult entertainment devices.
Many industrial and military “robots” exist which are trainable or adaptively interact with their environment or both. This robotic art is not directed at toys or the home. It focuses exclusively on utility without regard to play value. U.S. Pat. No. 3,952,361 (Wilkins, issued Apr. 27, 1976) discloses the general principle of task training in a self-guided floor cleaner which is manually operated through a floor-cleaning task. The device is trained by recording pulse-driven wheel motor signals during the manual operation onto a tape recorder. The tape subsequently is played to generate motor-driving pulses for automated operation.
Other “training” means used in mobile commercial robots include making a digital image map of the ceiling during manual operation from an upward-focused, robot-mounted video camera as in U.S. Pat. No. 5,155,684 (Burke et al. Issued Oct. 13, 1992) which is hereby incorporated by reference; setting up external beacons for triangulation as in U.S. Pat. No. 5,974,347 (Nelson, issued Oct. 26, 1999) which is hereby incorporated by reference; or using combinations of directional cues present in the operating environment such as gravity, the earth's magnetic field (multi-axis magnetometers), inertial guidance systems, global positioning via satellite (GPS), and radar imaging as in the case of guided missiles. Examples of such missile guidance technologies include U.S. Pat. No. 5,451,014 (Dare et al. issued Sep. 19, 1995) disclosing an inertial guidance system not requiring initialization; U.S. Pat. No. 5,943,009 (Abbot, Aug. 24, 1999) disclosing a simple GPS guidance system; and U.S. Pat. No. 5,917,442 (Manoongian et al., issued Jun. 29, 1999) disclosing guidance means where the target is illuminated (by radar). Related in technology, but not purpose, is U.S. Pat. No. 5,883,861 (Moser et al., issued May 12, 1998) disclosing an electronic compass in a wristwatch. Although many of these guidance technologies have been reduced to compact solid-state devices, they have not, sans warheads, heretofore been adapted for use in educational toys.
There is an unfilled for home cleaning robots that use low energy cleaning techniques and thus make chores easier for the user.
SUMMARY OF THE INVENTION
The present invention relates to autonomous, mobile, microprocessor-controlled home cleaning robots provided with the means to perform useful functions and capable of learning and adaptively performing useful functions.
In one embodiment, the present invention is a mobile, microprocessor-controlled home cleaning robot. The robot comprises a platform, a motive force attached to the platform. This motive force moves the platform on a substantially horizontal surface. The robot also includes a computer processing unit capable of storing, receiving and transmitting data that is attached to said platform. The robot also includes at least one sensor attached to the platform, which is capable of detecting a change on the horizontal surface. The sensor provides input to the computer processing unit. The platform includes a cleaning implement operatively associated with the platform and a power source connected to the motive force and computer processing unit, whereby the computer processing unit directs horizontal movement of the platform based upon input data received from the at least one sensor.
In one embodiment the present invention is comprised of an autonomous, adaptive mobile home cleaning robot provided with a detachable or dischargeable electrostatic cleaning cloth.
In one embodiment the present invention is comprised of an autonomous, trainable, adaptive mobile home cleaning robot provided with a detachable or dischargeable electrostatic cleaning cloth.
REFERENCES:
patent: 367420 (1887-08-01), Luchs
patent: 2770074 (1956-11-01), Jones
patent: 3088157 (1963-05-01), Aguilar
patent: 3952361 (1976-04-01), Wilkins
patent: 3963096 (1976-06-01), Jones
patent: 4114711 (1978-09-01), Wilkins
patent: 4161793 (1979-07-01), Merchan
patent: 4306329 (1981-12-01), Yokoi
patent: 4515235 (1985-05-01), Yamamoto et al.
patent: 4674048 (1987-06-01), Okumura
Bartsch Eric Richard
Fisher Charles William
France Paul Amaat
Heaton Gary Gordon
Hortel Thomas Charles
Cuchlinski Jr. William A.
Huston Larry L.
Lewis Leonard L.
Marc McDieunel
The Procter & Gamble & Company
LandOfFree
Home cleaning robot does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Home cleaning robot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Home cleaning robot will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2994480