Home automation system and method

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Sequential or selective

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S012000, C700S019000, C700S083000, C700S275000, C700S276000

Reexamination Certificate

active

06792319

ABSTRACT:

MICROFICHE APPENDIX
Submitted with this application is a Microfiche Appendix containing a computer program listing for the Cross software program described below.
FIELD OF THE INVENTION
The present invention relates to home automation, and more particularly to a home automation system and method that enables automated control of electronic devices and appliances in a single family home. The home automation system uses a knowledge-based software application, a fast and reliable communications network, a number of different plug and play sensors and controlled objects, and a service model that enables the wide spread support and massive deployment of this system.
BACKGROUND OF THE INVENTION
For many years, “do-it-yourselfers” have been trying to automate their lights, stereos, HVAC, sprinkler systems, etc, using programs such as “HAI”, “Home Director”, “Activehome”, “HouseLinc”, “JDS TimeCommander”, “JDS Stargate”, “HAL2000”, “HomeVoice”, and “HomeVision” to generate commands and using X.10-based sensors, switches and controllers to execute the commands. This methodology has many problems.
The X.10 protocol itself, which uses signals transmitted from a controller over standard AC power lines within the house to receivers that control electronic devices, is slow and unreliable. Most X.10 commands take more than ⅓ of a second to send. This is too long for many applications, such as automated lighting, because humans—expecting an automated response—start to question whether the lights will come on at all after that amount of time. Moreover, most receivers do not acknowledge to the controller that the command was received. Therefore, if the command is not properly received, nothing gets controlled. Some recent X.10 modules now include “2-Way Transmitter Receivers” which acknowledge receiving commands, but the controllers for such modules are very expensive and the acknowledgement is very slow. Lastly, the X.10 protocol is very limited in its command set with only 16 defined commands. There is the possibility of having more commands, but there's not a standard for this protocol, and these additional commands take a long time to send. Other protocols using standard AC power lines tend to be too slow and expensive.
Traditional sensors used to recognize the presence of people in a room are slow and too prone to false positives. Traditional sensor architectures use one or more wide angle motion sensors that determine occupancy by detecting movement in the room. The problem with this approach is that either: (a) the sensitivity is set high enough to quickly detect people entering a room, in which case events such as the heat turning on or sudden sunlight changes may also indicate to the sensor that someone has entered the room (a condition known as a “false positive”) or (b) the sensitivity of the sensor is turned down enough to prevent false positives, in which case the sensor takes too long to recognize people entering the room or it fails to recognize the presence of people in the room at all. Further, these sensors have problems accurately determining if people are present when those people are not moving much or at all (e.g. reading or watching television). The sensitivity needed to detect minor movements of a sedentary person in the room is vastly different from the sensitivity needed to detect a person walking briskly through the room.
The software used to operate controllers of home automation systems typically is not a knowledge-based program, but is rather a programming language that the home owner or installer uses to develop a customized program for each particular house. In this way, each sensor gets tested with “if/then” syntax and each controlled item becomes a control statement. This implies that each installation gets very little knowledge from previous installations and that there is very little reproducibility among homes. In addition, if anything goes wrong, only the person(s) responsible for programming the system can fix the problem. Therefore, each home owner either becomes the programmer for his/her home, or he/she becomes completely dependent on his/her installer.
The software typically used to control home automation is too limited in functionality. As mentioned above, each home is based on a program written or modified specifically for that home. Therefore, the programs tend to be limited in functionality. So, for example, the ability for different rooms to have different states and modes simultaneously for varying how devices are controlled when sensors are triggered, or the ability to easily change the operating characteristics of controlled devices, are not found in existing systems because it is so difficult to program such complicated features. There are a large number of additional examples that fall in this category.
The existing solutions also require special programming for each new piece of hardware. That is, “plug and play” hardware doesn't exist for much of the market. Again, since the control of the home is dependent on the program written by the home owner or installer, that person must write or modify the software to control each module. This is relatively easy in the case of X.10-based devices because of their limited command set (see above). However, for more complicated devices such as HVAC, whole house audio, surveillance cameras, etc., the knowledge level required to interface to the hardware exceeds the ability for many home owners.
One characteristic common with most home automation systems is that when things don't work well, they typically don't work at all. In many automated homes, the basic functionality of lights, HVAC, stereos, and many other devices require that the software program is up and running. If the power fails (for longer than a UPS can handle), or the controlling computer freezes or breaks down, or the software program has a bug, then it is difficult or impossible to control the controlled devices. For example, LiteTouch, Inc. makes a lighting control system where each circuit of lights is directly wired to a LiteTouch controller module. If that module breaks, or the computer that runs the LiteTouch program stops running, or there is a bug in the software, then there is no switch that can turn on these lights. What is worse is that keypads and remote controller modules replace the standard room light switches, so new users or visitors to a home that are not familiar with the home automation system will be unable to intuitively perform such basic functions as turning on a light.
Existing solutions further lack a good Internet interface. Because each house has a customized program running it, it is difficult to provide a generic interface that provides much value, nor is it easy to teach each home owner or installer how to write web-enabled programs. Existing home automation solutions also cannot be massively deployed or supported. While individual products such as X.10 light switches have broad market acceptance, the house-specific program and lack of plug and play software make it impossible to massively deploy any of today's solutions. Similarly, it is impossible to develop a leverageable support model for today's custom solutions.
There is a need for a home automation system that includes a reliable sensor architecture, a knowledge based central controller and operating software, compatible plug and play controlled objects, a fast and reliable communications network, and a service module and internet access that allows wide deployment of the system.
SUMMARY OF THE INVENTION
The present invention solves the aforementioned problems by providing a superior home automation system and method that better matches the needs and abilities of those wishing to automate their homes.
The home automation system of the present invention is for a home having a plurality of rooms separated by doorways, wherein each room has at least one of the doorways associated therewith. The home automation system includes a plurality of controlled objects for placement in rooms, a plurality of entry/exit sensors

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Home automation system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Home automation system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Home automation system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.